12 research outputs found

    Prevalence and Outcomes of COVID-19 among Hematology/Oncology Patients and Providers of a Community-Facing Health System during the B1.1.529 (“Omicron”) SARS-CoV-2 Variant Wave

    No full text
    (1) Background: the SARS-CoV-2 (COVID-19) pandemic continues, and patients actively receiving chemotherapy are known to be at enhanced risk for developing symptomatic disease with poorer outcomes. Our study evaluated the prevalence of COVID-19 among patients and providers of our community-facing county health system during the B1.1.529 (“Omicron”) COVID-19 variant wave. (2) Methods: We retrospectively analyzed patients that received care and clinical providers whom worked at the Jackson Memorial Hospital Hematology/Oncology clinic in Miami, Florida, USA, from 1 December 2021 through 30 April 2022. We assessed demographic variables and quality outcomes among patients. (3) Results: 1031 patients and 18 providers were retrospectively analyzed. 90 patients tested positive for COVID-19 (8.73%), while 6 providers tested positive (33.3%) (p = 0.038). There were 4 (10.3%) COVID-19-related deaths (and another outside our study timeframe) and 39 non-COVID-19-related deaths (89.7%) in the patient population (p = 0.77). COVID-19 accounted for 4.44% of our clinic’s total mortality, and delayed care in 64.4% of patients. (4) Conclusions: The prevalence of COVID-19 positivity in our patient cohort mirrored local, state, and national trends, however a statistically significant greater proportion of our providers tested positive. Almost two-thirds of patients experienced a cancer treatment delay, significantly impacting oncologic care. © 2022 by the authors.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants.

    Get PDF
    We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics
    corecore