5 research outputs found

    Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin

    No full text
    The aim of this study was to characterize and compare the bacterial community structure of two distinct oil samples from a petroleum field in Brazil by using both molecular, based on the construction of 16S rRNA gene libraries, and cultivation methods. Statistical comparisons of libraries based on Amplified Ribosomal DNA Restriction Analysis (ARDRA) data revealed no significant differences between the communities recovered in the non-biodegraded (NBD) and highly biodegraded oils (HBD). BlastN analysis of the 16S rRNA gene sequences representative of distinct ribotypes from both oils showed the presence of nine different bacterial genera in these samples, encompassing members of the genera Arcobacter, Halanaerobium, Marinobacter, Propionibacterium, Streptomyces, Leuconostoc, Acinetobacter, Bacillus and Streptococcus. Enrichments obtained using oil as inoculum and sole carbon source yielded bacterial isolates showing high 16S rRNA gene sequence similarity with Achromobacter xylosoxidans, Bacillus subtilis, Brevibacillus sp., Dietzia sp. and Methylobacterium sp. Comparison between the data obtained using cultivation-independent and enrichment cultures suggests that different selection of community members may occur when using distinct approaches. All the organisms found, except for Leuconostoc sp. and Streptococus sp., have been previously reported in the literature as hydrocarbon degraders and/or associated to oil field environments.91325326

    Pretreatment and enzymatic hydrolysis of lignocellulosic biomass for reducing sugar production

    No full text
    Conversion of lignocellulosic biomass into reducing sugar has contributed to an alternative use of lignocellulose source, especially in the production of value-added products such as amino acids, biofuels, and vitamins. In the bioconversion process, pretreatment of lignocellulosic biomass is important to enhance the accessibility of enzyme hydrolysis, thus increasing the yield of reducing sugar. Lignocellulosic biomass has a very complex arrangement of structure that needs a proper study in pretreatment and enzymatic hydrolysis process to obtain an optimum yield of reducing sugar. This chapter discusses chemical and enzymatic pretreatment methods that are commonly applied to effectively modify the chemical structures of lignocellulosic biomass. Acid pretreatment using dilute sulfuric acid (H2SO4) is the most commonly employed for chemical pretreatment while sodium hydroxide (NaOH) is the most commonly applied for alkaline pretreatment because of its ability to delignify biomass. Then, enzymatic hydrolysis of lignocellulosic biomass for the production of reducing sugar is discussed in detail. The kinetics and optimization of hydrolysis which are the key parameters that determine the yields of reducing sugar are also presented. The right pretreatment method combined with an efficient hydrolysis process will ensure successful conversion of lignocellulosic biomass into reducing sugar, thus providing a sustainable production of reducing sugar from biomass for various applications
    corecore