4 research outputs found

    The Effect of IL-4 Gene Polymorphisms on Cytokine Production in Patients with Chronic Periodontitis and in Healthy Controls

    No full text
    Chronic periodontitis (CP) is an inflammatory disease of the teeth-supporting tissues in which genetic predisposition, dental plaque bacteria, and immune mechanisms all play important roles. The aim of this study was to evaluate the occurrence of IL-4 gene polymorphisms in chronic periodontitis and to investigate the association between polymorphisms and cytokines production after bacterial stimulation. Sixty-two subjects (47 CP patients and 15 healthy controls) with detected two polymorphisms in the IL-4 gene (-590C/T and intron 3 VNTR) were examined. Production of cytokines (IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-17, TNFα, INFγ, and VEGF) was studied after in vitro stimulation of isolated peripheral blood by mitogens (Pokeweed mitogen, Concanavalin A), dental plaque bacteria (Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Porphyromonas gingivalis, and Prevotella intermedia), and Heat Shock Protein (HSP) 70 by the Luminex multiplex cytokine analysis system. The results were correlated with IL-4 genotypes in patients with CP and healthy controls. The mononuclear cells isolated from peripheral blood of CP patients with selected IL-4 polymorphisms significantly altered the production of IFNγ, IL-10, IL-1β, IL-1α, TNFα, and IL-6 after stimulation by HSP 70 or selected bacteria (from P<0.001 to P<0.05). IL-4 gene polymorphisms may influence the function of mononuclear cells to produce not only interleukin-4 but also other cytokines, especially in patients with CP

    ENIGMA CHEK2gether Project : a comprehensive study identifies functionally impaired CHEK2 germline missense variants associated with increased breast cancer risk

    No full text
    Purpose: Germline pathogenic variants in CHEK2 confer moderately elevated breast cancer risk (odds ratio, OR ∼ 2.5), qualifying carriers for enhanced breast cancer screening. Besides pathogenic variants, dozens of missense CHEK2 variants of uncertain significance (VUS) have been identified, hampering the clinical utility of germline genetic testing (GGT). Experimental Design: We collected 460 CHEK2 missense VUS identified by the ENIGMA consortium in 15 countries. Their functional characterization was performed using CHEK2-complementation assays quantifying KAP1 phosphorylation and CHK2 autophosphorylation in human RPE1–CHEK2-knockout cells. Concordant results in both functional assays were used to categorize CHEK2 VUS from 12 ENIGMA case–control datasets, including 73,048 female patients with breast cancer and 88,658 ethnicity-matched controls. Results: A total of 430/460 VUS were successfully analyzed, of which 340 (79.1%) were concordant in both functional assays and categorized as functionally impaired (N = 102), functionally intermediate (N = 12), or functionally wild-type (WT)–like (N = 226). We then examined their association with breast cancer risk in the case–control analysis. The OR and 95% CI (confidence intervals) for carriers of functionally impaired, intermediate, and WT-like variants were 2.83 (95% CI, 2.35–3.41), 1.57 (95% CI, 1.41–1.75), and 1.19 (95% CI, 1.08–1.31), respectively. The meta-analysis of population-specific datasets showed similar results. Conclusions: We determined the functional consequences for the majority of CHEK2 missense VUS found in patients with breast cancer (3,660/4,436; 82.5%). Carriers of functionally impaired missense variants accounted for 0.5% of patients with breast cancer and were associated with a moderate risk similar to that of truncating CHEK2 variants. In contrast, 2.2% of all patients with breast cancer carried functionally wild-type/intermediate missense variants with no clinically relevant breast cancer risk in heterozygous carriers
    corecore