4 research outputs found

    Failure of lactate clearance predicts the outcome of critically ill septic patients

    Get PDF
    Purpose: Early lactate clearance is an important parameter for prognosis assessment and therapy control in sepsis. Patients with a lactate clearance >0% might differ from patients with an inferior clearance in terms of intensive care management and outcomes. This study analyzes a large collective with regards to baseline risk distribution and outcomes. Methods: In total, 3299 patients were included in this analysis, consisting of 1528 (46%) ≤0% and 1771 (54%) >0% patients. The primary endpoint was intensive care unit (ICU) mortality. Multilevel logistic regression analyses were used to compare both groups: A baseline model (model 1) with lactate clearance as a fixed effect and ICU as a random effect was installed. For model 2, patient characteristics (model 2) were included. For model 3, intensive care treatment (mechanical ventilation and vasopressors) was added to the model. Models 1 and 2 were used to evaluate the primary and secondary outcomes, respectively. Model 3 was only used to evaluate the primary outcomes. Adjusted odds ratios (aORs) with respective 95% confidence intervals (CI) were calculated. Results: The cohorts had no relevant differences regarding the gender, BMI, age, heart rate, body temperature, and baseline lactate. Neither the primary infection focuses nor the ethnic background differed between both groups. In both groups, the most common infection sites were of pulmonary origin, the urinary tract, and the gastrointestinal tract. Patients with lactate clearance >0% evidenced lower sepsis-related organ failure assessment (SOFA) scores (7 ± 6 versus 9 ± 6; p < 0.001) and creatinine (1.53 ± 1.49 versus 1.80 ± 1.67; p < 0.001). The ICU mortality differed significantly (14% versus 32%), and remained this way after multivariable adjustment for patient characteristics and intensive care treatment (aOR 0.43 95% CI 0.36–0.53; p < 0.001). In the additional sensitivity analysis, the lack of lactate clearance was associated with a worse prognosis in each subgroup. Conclusion: In this large collective of septic patients, the 6 h lactate clearance is an independent method for outcome prediction

    Part V. Surveillance activities

    Get PDF
    The critical importance of robust antimicrobial resistance (AMR) surveillance in South Africa cannot be overemphasised. Without knowing what the resistance situation is, it is impossible to develop appropriate antibiotic treatment guidelines and associated essential drug lists (EDLs) and to create and update evidence-based policies both at institutional and national levels. The broader benefits of AMR surveillance data include: • Determining incidence rates of hospital-acquired infections (HAIs) and identifying the associated causative organisms and their AMR profile to feed into hospital guidelines and more appropriate treatment for infected patients. This in turn allows early interventions by infection prevention and control (IPC) so as to minimise further spread of AMR organisms. • Profiling local or regional AMR patterns to inform selection of AMR screening practices in specific health care facilities (HCFs). • Educating health care staff about the impact of AMR and about issues in antibiotic use and misuse. • Monitoring trends over time to signal whether interventions are having the desired effect. • Comparing South Africa with other countries in the region and around the world to facilitate sharing intervention experience. South Africa has a good start at AMR surveillance, but it can and must be improved. For most AMR infections, surveillance data are laboratory and therefore organism centred, which limits the ability to differentiate between colonisation and infection with AMR organisms. It is also not possible to determine the clinical impact of AMR. A major shortcoming is that AMR surveillance is currently limited to a minority of HCFs, which does not reflect the extent of AMR across South Africa. The very limited profiling of AMR in the community needs to be addressed. Finally, the variability of surveillance methodology used makes it impossible to compare rates and trends across institutions. The first part of this section describes studies that have identified serious AMR issues in South Africa which require urgent monitoring; these have provided compelling evidence of the need, and possible methods, for AMR surveillance.www.samj.org.z

    Part V. Surveillance activities

    Get PDF
    The critical importance of robust antimicrobial resistance (AMR) surveillance in South Africa cannot be overemphasised. Without knowing what the resistance situation is, it is impossible to develop appropriate antibiotic treatment guidelines and associated essential drug lists (EDLs) and to create and update evidence-based policies both at institutional and national levels. The broader benefits of AMR surveillance data include: • Determining incidence rates of hospital-acquired infections (HAIs) and identifying the associated causative organisms and their AMR profile to feed into hospital guidelines and more appropriate treatment for infected patients. This in turn allows early interventions by infection prevention and control (IPC) so as to minimise further spread of AMR organisms. • Profiling local or regional AMR patterns to inform selection of AMR screening practices in specific health care facilities (HCFs). • Educating health care staff about the impact of AMR and about issues in antibiotic use and misuse. • Monitoring trends over time to signal whether interventions are having the desired effect. • Comparing South Africa with other countries in the region and around the world to facilitate sharing intervention experience. South Africa has a good start at AMR surveillance, but it can and must be improved. For most AMR infections, surveillance data are laboratory and therefore organism centred, which limits the ability to differentiate between colonisation and infection with AMR organisms. It is also not possible to determine the clinical impact of AMR. A major shortcoming is that AMR surveillance is currently limited to a minority of HCFs, which does not reflect the extent of AMR across South Africa. The very limited profiling of AMR in the community needs to be addressed. Finally, the variability of surveillance methodology used makes it impossible to compare rates and trends across institutions.http://www.samj.org.zaam2017School of Health Systems and Public Health (SHSPH
    corecore