27 research outputs found

    Use of Candida rugosa lipase immobilized on sepabeads for the amyl caprylate synthesis: Batch and fluidized bed reactor study

    Get PDF
    Lipase from Candida rugosa was covalently immobilized on Sepabeads EC-EP for application for amyl caprylate synthesis in an organic solvent system. Several solvents were tested in terms of biocatalyst stability and the best result was obtained with isooctane. The lipase-catalyzed esterification in the selected system was performed in batch and fluidized bed reactor systems. The influence of several important reaction parameters including temperature, initial water content, enzyme loading, acid/alcohol molar ratio, and time of addition of molecular sieves is carefully analyzed by means of an experimental design. Almost complete conversion (> 99%) of the substrate to ester could be performed in a batch reactor system, using lipase loading as low as 37 mg g-1 dry support and in a relatively short time (24 hrs) at 37\ub0C, when high initial substrate molar ratio of 2.2 is used. Kinetics in a fluidized bed reactor system seems to still have a slightly better profile than in the batch system (90.2% yields after 14 hrs). The fluidized bed reactor operated for up 70 hrs almost with no loss in productivity, implying that the proposed process and the immobilized system could provide a promising approach for the amyl caprylate synthesis at the industrial scale

    The temperature dependence of the retention index for n-alkyl esters of acetic, propionic, cyclohexanecarboxylic, benzoic and phenylacetic acid on DB-1 and DB-5 capillary columns

    No full text
    The temperature dependence of the retention index was studied for n-alkyl esters of acetic, propionic, cyclohexanecarboxylic, benzoic and phenylacetic acid on DB-1 and DB-5 capillary columns. The study was performed over various temperature ranges depending on the volatility of the ester. Two linear equations of the temperature dependence of the retention data on the column temperature and its reciprocal as variables were studied. Agood linearity of the retention index versus column temperature was found

    Gas chromatographic retention indices for N-substituted amino s-triazines on capillary columns. Part V. Temperature dependence of the retention index

    No full text
    The temperature dependence of the retention index was studied for N-substituted amino s-triazines on DB-1, DB-5 and DB-WAX capillary columns within the temperature range 190230ºC. Two linear equations with the column temperature and its reciprocal as variables were studied. The first one shows a slightly better precision for 2,4-bis(alkylamino)-6-chloro-s-triazines and 2-alkylamino-4,6-dichloro-s-triazines, while the second one shows a better precision for 2,4-bis(cycloalkylamino)-6-chloro-s-triazines

    Properties and synthesis of milrinone

    No full text
    Milrinone, 1,6-dihydro-2-methyl-6-oxo-[3,4’-bipyridine]-5-carbonitrile, is a positive inotropic cardiotonic agent with vasodilator properties that acts as selective phosphodiesterase 3 inhibitor in cardiac and vascular smooth muscle. Trade names of milrinone are Primacor, Corotrop, Corotrope, and Milrila. Milrinone, an amrinone derivative, is 20 to 50 times more active than amrinone and possesses reduced propensity to side effects. The use of milrinone has created controversy in the medical as the result of increased mortality rate among patients that received high amounts of milrinone in oral form. Reaserch show that it can be benifitial for patients with severe congestive heart failure when used as short-time intravenous therapy. Milrinone properties, stability, as well as mechanism of action and synthesis under laboratory and industry conditions have been described in this paper. For industrial purposes milrinone is synthesized by condensation of cyanoacetamide with 4-(dimethylamino)-3-(4-pyridinyl)-3-buten-2-one and 4-ethoxy-3-(4-pyridinyl)-3-buten-2-one in presence of a base, or by the reaction of 1-(4-pyridinyl)- 2-propanone with ethoxymethylenmalononitrile or 4-alkoxy-3-(4-pyridinyl)-3-buten-2-one with malononitrile without the use of external base. The starting compound for these syntheses is 4-picoline. Alternative synthesis of milrinone starts from 2-methyl-3-(4-pyridylidiene)-1,1,5-tricyano-1,4-pentadiene-5-carboxamide and 2-methyl-6-oxo-1,6-dihydro-3,4’-bipyridine-5-carboxamide. Lastly, methods for milrinone synthesis in laboratory, injection preparation and purification have been summarized

    Benzylation of N-phenyl-2-phenylacetamide under microwave irradiation

    No full text

    Alkylation of N-substituted-2-phenylacetamides

    No full text

    Synthesis of azo pyridone dyes

    No full text
    Over 50% of all colorants which are used nowdays are azo dyes and pigments, and among them arylazo pyridone dyes (and pigments) have became of interest in last several decades due to the high molar extinction coefficient, and the medium to high light and wet fastness properties. They find application generally as disperse dyes. The importance of disperse dyes increased in the 1970s and 1980s due to the use of polyester and nylon as the main synthetic fibers. Also, disperse dyes were used rapidly since 1970 in inks for the heat-transfer printing of polyester. The main synthetic route for the preparation of azo dyes is coupling reaction between an aromatic diazo compound and a coupling component. Of all dyes manufactured, about 60% are produced by this reaction. Arylazo pyridone dyes can be prepared from pyridone moiety as a coupling component, where substituent can be on nitrogen, and diazonim salts which can be derived from different substituted anilines or other heterocyclic derivatives. In addition, arylazo dyes containing pyridone ring can be prepared from arylazo diketones or arylazo ketoesters (obtained by coupling β-diketones or β-ketoesters with diazonim salts) by condensation with cyanoacetamide. Disazo dyes can be prepared by tetrazotizing a dianiline and coupling it with a pyridone or by diazotizing aniline and coupling it with a dipyridone. Trisazo dyes can be also prepared by diazotizing of aniline and coupling it with a tripyridone or by hexazotizing a trianiline and coupling it with a pyridone. The main goal of this paper is to give a brief review on the synthesis of arylazo pyridone dyes due to the lack of such reviews. In addition, some properties of arylazo pyridone dyes as light fastness and azo-hydrazon tautomerism are disccused
    corecore