1,510 research outputs found

    Erupted magma volume estimates at Santiaguito and Pacaya Volcanoes, Guatemala using digital elevation models

    Get PDF
    High resolution digital elevation models (DEMs) of Santiaguito and Pacaya volcanoes, Guatemala, were used to estimate volume changes and eruption rates between 1954 and 2001. The DEMs were generated from contour maps and aerial photography, which were analyzed in ArcGIS 9.0®. Because both volcanoes were growing substantially over the five decade period, they provide a good data set for exploring effective methodology for estimating volume changes. The analysis shows that the Santiaguito dome complex grew by 0.78 ± 0.07 km3 (0.52 ± 0.05 m3 s-1) over the 1954-2001 period with nearly all the growth occurring on the El Brujo (1958-75) and Caliente domes (1971-2001). Adding information from field data prior to 1954, the total volume extruded from Santiaguito since 1922 is estimated at 1.48 ± 0.19 km3. Santiaguito’s growth rate is lower than most other volcanic domes, but it has been sustained over a much longer period and has undergone a change toward more exogenous and progressively slower extrusion with time. At Santiaguito some of the material being added at the dome is subsequently transported downstream by block and ash flows, mudflows and floods, creating channel shifting and areas of aggradation and erosion. At Pacaya volcano a total volume of 0.21 ± 0.05 km3 was erupted between 1961 and 2001 for an average extrusion rate of 0.17 ± 0.04 m3 s-1. Both the Santiaguito and Pacaya eruption rate estimates reported here are minima, because they do not include estimates of materials which are transported downslope after eruption and data on ashfall which may result in significant volumes of material spread over broad areas. Regular analysis of high resolution DEMs using the methods outlined here, would help quantify the effects of fluvial changes to downstream populated areas, as well as assist in tracking hazards related to dome collapse and eruption

    Questions For Baptists

    Get PDF
    https://digitalcommons.acu.edu/crs_books/1410/thumbnail.jp

    Effect of external magnetic field on electron spin dephasing induced by hyperfine interaction in quantum dots

    Full text link
    We investigate the influence of an external magnetic field on spin phase relaxation of single electrons in semiconductor quantum dots induced by the hyperfine interaction. The basic decay mechanism is attributed to the dispersion of local effective nuclear fields over the ensemble of quantum dots. The characteristics of electron spin dephasing is analyzed by taking an average over the nuclear spin distribution. We find that the dephasing rate can be estimated as a spin precession frequency caused primarily by the mean value of the local nuclear magnetic field. Furthermore, it is shown that the hyperfine interaction does not fully depolarize electron spin. The loss of initial spin polarization during the dephasing process depends strongly on the external magnetic field, leading to the possibility of effective suppression of this mechanism.Comment: 10 pages, 2 figure

    Field-induced thermal metal-to-insulator transition in underdoped LSCO

    Full text link
    The transport of heat and charge in cuprates was measured in undoped and heavily-underdoped single crystal La_{2-x}Sr_xCuO_{4+delta} (LSCO). In underdoped LSCO, the thermal conductivity is found to decrease with increasing magnetic field in the T --> 0 limit, in striking contrast to the increase observed in all superconductors, including cuprates at higher doping. The suppression of superconductivity with magnetic field shows that a novel thermal metal-to-insulator transition occurs upon going from the superconducting state to the field-induced normal state.Comment: 2 pages, 2 figures, submitted to M2S-Rio 2003 Proceeding

    Radiation-Induced Magnetoresistance Oscillations in a 2D Electron Gas

    Full text link
    Recent measurements of a 2D electron gas subjected to microwave radiation reveal a magnetoresistance with an oscillatory dependence on the ratio of radiation frequency to cyclotron frequency. We perform a diagrammatic calculation and find radiation-induced resistivity oscillations with the correct period and phase. Results are explained via a simple picture of current induced by photo-excited disorder-scattered electrons. The oscillations increase with radiation intensity, easily exceeding the dark resistivity and resulting in negative-resistivity minima. At high intensity, we identify additional features, likely due to multi-photon processes, which have yet to be observed experimentally.Comment: 5 pages, 3 figures; final version as published in Phys Rev Let

    Electrochemical Biosensors: Recommended Definitions and Classification

    Get PDF
    Two Divisions of the International Union of Pure and Applied Chemistry (IUPAC), namely Physical Chemistry (Commission I.7 on Biophysical Chemistry, formerly Steering Committee on Biophysical Chemistry) and Analytical Chemistry (Commission V.5 on Electroanalytical Chemistry), have prepared recommendations on the definition, classification and nomenclature related to electrochemical biosensors; these recommendations could, in the future, be extended to other types of biosensors. An electrochemical biosensor is a self-contained integrated device, which is capable of providing specific quantitative or semi-quantitative analytical information using a biological recognition element (biochemical receptor) which is retained in direct spatial contact with an electrochemical transduction element. Because of their ability to be repeatedly calibrated, we recommend that a biosensor should be clearly distinguished from a bioanalytical system, which requires additional processing steps, such as reagent addition. A device which is both disposable after one measurement, i.e. single use, and unable to monitor the analyte concentration continuously or after rapid and reproducible regeneration should be designated a single-use biosensor. Biosensors may be classified according to the biological specificity-conferring mechanism or, alternatively, the mode of physicochemical signal transduction. The biological recognition element may be based on a chemical reaction catalysed by, or on an equilibrium reaction with, macromolecules that have been isolated, engineered or present in their original biological environment. In the latter case, equilibrium is generally reached and there is no further, if any, net consumption of analyte(s) by the immobilized biocomplexing agent incorporated into the sensor. Biosensors may be further classified according to the analytes or reactions that they monitor: direct monitoring of analyte concentration or of reactions producing or consuming such analytes; alternatively, an indirect monitoring of inhibitor or activator of the biological recognition element (biochemical receptor) may be achieved. A rapid proliferation of biosensors and their diversity has led to a lack of rigour in defining their performance criteria. Although each biosensor can only truly be evaluated for a particular application, it is still useful to examine how standard protocols for performance criteria may be defined in accordance with standard IUPAC protocols or definitions. These criteria are recommended for authors, referees and educators and include calibration characteristics (sensitivity, operational and linear concentration range, detection and quantitative determination limits), selectivity, steady-state and transient response times, sample throughput, reproducibility, stability and lifetime

    Transport properties in the d-density wave state: Wiedemann-Franz law

    Full text link
    We study the Wiedemann-Franz (WF) law in the d-density wave (DDW) model. Even though the opening of the DDW gap (W0)(W_{0}) profoundly modifies the electronic density of states and makes it dependent on energy, the value of the WF ratio at zero temperature (T=0) remains unchanged. However, neither electrical nor thermal conductivity display universal behavior. For finite temperature, with T greater than the value of the impurity scattering rate at zero frequency γ(0)\gamma(0) i.e. γ(0)<T≪W0\gamma(0)<T\ll W_{0}, the usual WF ratio is obtained only in the weak scattering limit. For strong scattering there are large violations of the WF law.Comment: 1 figur

    Observation of Apparently Zero-Conductance States in Corbino Samples

    Full text link
    Using Corbino samples we have observed oscillatory conductance in a high-mobility two-dimensional electron system subjected to crossed microwave and magnetic fields. On the strongest of the oscillation minima the conductance is found to be vanishingly small, possibly indicating an insulating state associated with these minima.Comment: 4 pages, 3 figures, RevTex
    • …
    corecore