1,055 research outputs found

    Effect of external magnetic field on electron spin dephasing induced by hyperfine interaction in quantum dots

    Full text link
    We investigate the influence of an external magnetic field on spin phase relaxation of single electrons in semiconductor quantum dots induced by the hyperfine interaction. The basic decay mechanism is attributed to the dispersion of local effective nuclear fields over the ensemble of quantum dots. The characteristics of electron spin dephasing is analyzed by taking an average over the nuclear spin distribution. We find that the dephasing rate can be estimated as a spin precession frequency caused primarily by the mean value of the local nuclear magnetic field. Furthermore, it is shown that the hyperfine interaction does not fully depolarize electron spin. The loss of initial spin polarization during the dephasing process depends strongly on the external magnetic field, leading to the possibility of effective suppression of this mechanism.Comment: 10 pages, 2 figure

    Radiation-Induced Magnetoresistance Oscillations in a 2D Electron Gas

    Full text link
    Recent measurements of a 2D electron gas subjected to microwave radiation reveal a magnetoresistance with an oscillatory dependence on the ratio of radiation frequency to cyclotron frequency. We perform a diagrammatic calculation and find radiation-induced resistivity oscillations with the correct period and phase. Results are explained via a simple picture of current induced by photo-excited disorder-scattered electrons. The oscillations increase with radiation intensity, easily exceeding the dark resistivity and resulting in negative-resistivity minima. At high intensity, we identify additional features, likely due to multi-photon processes, which have yet to be observed experimentally.Comment: 5 pages, 3 figures; final version as published in Phys Rev Let

    Microwave conductivity of a d-wave superconductor disordered by extended impurities: a real-space renormalization group approach

    Get PDF
    Using a real-space renormalization group (RSRG) technique, we compute the microwave conductivity of a d-wave superconductor disordered by extended impurities. To do this, we invoke a semiclassical approximation which naturally accesses the Andreev bound states localized near each impurity. Tunneling corrections (which are captured using the RSRG) lead to a delocalization of these quasiparticles and an associated contribution to the microwave conductivity.Comment: 8 pages, 4 figures. 2 figures added to previous versio

    Observation of Apparently Zero-Conductance States in Corbino Samples

    Full text link
    Using Corbino samples we have observed oscillatory conductance in a high-mobility two-dimensional electron system subjected to crossed microwave and magnetic fields. On the strongest of the oscillation minima the conductance is found to be vanishingly small, possibly indicating an insulating state associated with these minima.Comment: 4 pages, 3 figures, RevTex

    Microwave Photoconductivity in Two-Dimensional Electron Systems due to Photon-Assisted Interaction of Electrons with Leaky Interface Phonons

    Full text link
    We calculate the contribution of the photon-assisted interaction of electrons with leaky interface phonons to the dissipative dc photoconductivity of a two-dimensional electron system in a magnetic field. The calculated photoconductivity as a function of the frequency of microwave radiation and the magnetic field exhibits pronounced oscillations. The obtained oscillation structure is different from that in the case of photon-assisted interaction with impurities. We demonstrate that at a sufficiently strong microwave radiation in the certain ranges of its frequency (or in certain ranges of the magnetic field) this mechanism can result in the absolute negative conductivity.Comment: 3 pages, 1 figur

    Microwave Conductivity due to Scattering from Extended Linear Defects in d-Wave Superconductors

    Full text link
    Recent microwave conductivity measurements of detwinned, high-purity, slightly overdoped YBa2_{2}Cu3_{3}O6.993_{6.993} crystals reveal a linear temperature dependence and a near-Drude lineshape for temperatures between 1 and 20 K and frequencies ranging from 1 to 75 GHz. Prior theoretical work has shown that simple models of scattering by point defects (impurities) in d-wave superconductors are inconsistent with these results. It has therefore been suggested that scattering by extended defects such as twin boundary remnants, left over from the detwinning process, may also be important. We calculate the self-energy and microwave conductivity in the self-consistent Born approximation (including vertex corrections) for a d-wave superconductor in the presence of scattering from extended linear defects. We find that in the experimentally relevant limit (Ω,1/τ≪T≪Δ0\Omega, 1/\tau \ll T \ll \Delta_{0}), the resulting microwave conductivity has a linear temperature dependence and a near-Drude frequency dependence that agrees well with experiment.Comment: 13 pages, 7 figure

    Spectral and Transport Properties of d-Wave Superconductors With Strong Impurities

    Full text link
    One of the remarkable features of disordered d-wave superconductors is strong sensitivity of long range properties to the microscopic realization of the disorder potential. Particularly rich phenomenology is observed for the -- experimentally relevant -- case of dilute distributions of isolated impurity centers. Building on earlier diagrammatic analyses, the present paper derives and analyses a low energy effective field theory of this system. Specifically, the results of previous diagrammatic T-matrix approaches are extended into the perturbatively inaccessible low energy regimes, and the long range (thermal) transport behaviour of the system is discussed. It turns out that in the extreme case of a half-filled tight binding band and infinitely strong impurities (impurities at the unitary limit), the system is in a delocalized phase.Comment: 14 pages, two figures include

    A conceptual basis for surveying fouling communities at exposed and protected sites at sea: Feasible designs with exchangeable test bodies for in-situ biofouling collection

    Get PDF
    The enhanced inertia load caused by biofouling on device components, such as the foundations of wind turbines or other structures at sea, modifies the hydrodynamic properties, and increases the stress to structures, predominantly in upper water layers with high impact from wave dynamics. This compromises the stability, functioning, operation as well as the durability of these devices especially in exposed environments. A main challenge is the quantification of the impact of hydrodynamic forces on irregular bodies being overgrown by soft- and hard-bodied biofouling organisms. Therefore, test bodies from the upper 1–5 m water depth and thus exposed to the strongest wave actions close to the surface shall be overgrown by biofouling and used in measurement trials in a wave and current flume. These measurements shall shed light on the varying roughness and its influence on the load bearing capacity of foundation piles. Consequently, the main aims of the present work were the development of two independent test stations as holding devices for artificial test bodies for the collection of biofouling organisms during field studies: a carrying unit floating at the surface in an exposed area (System A) and a sampling device with access from a land-based facility (System B). Both systems are relatively easy to access, exhibit straightforward handling, and are reasonable cost-effective. A Test Body Support Unit (TBSU, System A) was designed and mounted on a spare buoy to carry the test bodies (cylinders), which serve as substrate for the fouling. The system was sufficiently robust to withstand several periods of rough sea conditions over the first two years. This system can only be accessed by vessels. System B (MareLift) provided the robustness and functionality needed for areas exhibiting harsh conditions but can be operated from land. The here used test bodies (steel panels) exhibited a sound basis for the monitoring of succession processes in the biofouling development. System B offered the possibility to analyse two habitats (intertidal and subtidal) and revealed clear differences in the composition and development of their fouling communities. Overall, both systems provide advantages in obtaining standardized biofouling samples compared to previous approaches. Such test stations play an important role in the risk management of marine sectors as they could help characterising biofouling communities over different geographical areas. System A and B provide a sound basis for biofouling research but potentially also for other potential research approaches in exposed areas as they provide space for future developments
    • …
    corecore