855 research outputs found
On the push&pull protocol for rumour spreading
The asynchronous push&pull protocol, a randomized distributed algorithm for
spreading a rumour in a graph , works as follows. Independent Poisson clocks
of rate 1 are associated with the vertices of . Initially, one vertex of
knows the rumour. Whenever the clock of a vertex rings, it calls a random
neighbour : if knows the rumour and does not, then tells the
rumour (a push operation), and if does not know the rumour and knows
it, tells the rumour (a pull operation). The average spread time of
is the expected time it takes for all vertices to know the rumour, and the
guaranteed spread time of is the smallest time such that with
probability at least , after time all vertices know the rumour. The
synchronous variant of this protocol, in which each clock rings precisely at
times , has been studied extensively. We prove the following results
for any -vertex graph: In either version, the average spread time is at most
linear even if only the pull operation is used, and the guaranteed spread time
is within a logarithmic factor of the average spread time, so it is . In the asynchronous version, both the average and guaranteed spread times
are . We give examples of graphs illustrating that these bounds
are best possible up to constant factors. We also prove theoretical
relationships between the guaranteed spread times in the two versions. Firstly,
in all graphs the guaranteed spread time in the asynchronous version is within
an factor of that in the synchronous version, and this is tight.
Next, we find examples of graphs whose asynchronous spread times are
logarithmic, but the synchronous versions are polynomially large. Finally, we
show for any graph that the ratio of the synchronous spread time to the
asynchronous spread time is .Comment: 25 page
General heatbath algorithm for pure lattice gauge theory
A heatbath algorithm is proposed for pure SU(N) lattice gauge theory based on
the Manton action of the plaquette element for general gauge group N.
Comparison is made to the Metropolis thermalization algorithm using both the
Wilson and Manton actions. The heatbath algorithm is found to outperform the
Metropolis algorithm in both execution speed and decorrelation rate. Results,
mostly in D=3, for N=2 through 5 at several values for the inverse coupling are
presented.Comment: 9 pages, 10 figures, 1 table, major revision, final version, to
appear in PR
Enhancing the spectral gap of networks by node removal
Dynamics on networks are often characterized by the second smallest
eigenvalue of the Laplacian matrix of the network, which is called the spectral
gap. Examples include the threshold coupling strength for synchronization and
the relaxation time of a random walk. A large spectral gap is usually
associated with high network performance, such as facilitated synchronization
and rapid convergence. In this study, we seek to enhance the spectral gap of
undirected and unweighted networks by removing nodes because, practically, the
removal of nodes often costs less than the addition of nodes, addition of
links, and rewiring of links. In particular, we develop a perturbative method
to achieve this goal. The proposed method realizes better performance than
other heuristic methods on various model and real networks. The spectral gap
increases as we remove up to half the nodes in most of these networks.Comment: 5 figure
Duality and perfect probability spaces
Abstract. Given probability spaces (Xi, Ai,Pi),i =1,2,let M(P1,P2)denote the set of all probabilities on the product space with marginals P1 and P2 and let h be a measurable function on (X1 × X2, A1 ⊗A2). Continuous versions of linear programming stemming from the works of Monge (1781) and Kantorovich-Rubinˇstein (1958) for the case of compact metric spaces are concerned with the validity of the duality sup { hdP:P∈M(P1,P2)
Self-organized patterns of coexistence out of a predator-prey cellular automaton
We present a stochastic approach to modeling the dynamics of coexistence of
prey and predator populations. It is assumed that the space of coexistence is
explicitly subdivided in a grid of cells. Each cell can be occupied by only one
individual of each species or can be empty. The system evolves in time
according to a probabilistic cellular automaton composed by a set of local
rules which describe interactions between species individuals and mimic the
process of birth, death and predation. By performing computational simulations,
we found that, depending on the values of the parameters of the model, the
following states can be reached: a prey absorbing state and active states of
two types. In one of them both species coexist in a stationary regime with
population densities constant in time. The other kind of active state is
characterized by local coupled time oscillations of prey and predator
populations. We focus on the self-organized structures arising from
spatio-temporal dynamics of the coexistence. We identify distinct spatial
patterns of prey and predators and verify that they are intimally connected to
the time coexistence behavior of the species. The occurrence of a prey
percolating cluster on the spatial patterns of the active states is also
examined.Comment: 19 pages, 11 figure
Regulatory Dynamics on Random Networks: Asymptotic Periodicity and Modularity
We study the dynamics of discrete-time regulatory networks on random
digraphs. For this we define ensembles of deterministic orbits of random
regulatory networks, and introduce some statistical indicators related to the
long-term dynamics of the system. We prove that, in a random regulatory
network, initial conditions converge almost surely to a periodic attractor. We
study the subnetworks, which we call modules, where the periodic asymptotic
oscillations are concentrated. We proof that those modules are dynamically
equivalent to independent regulatory networks.Comment: 23 pages, 3 figure
Population Dynamics in Spatially Heterogeneous Systems with Drift: the generalized contact process
We investigate the time evolution and stationary states of a stochastic,
spatially discrete, population model (contact process) with spatial
heterogeneity and imposed drift (wind) in one- and two-dimensions. We consider
in particular a situation in which space is divided into two regions: an oasis
and a desert (low and high death rates). Carrying out computer simulations we
find that the population in the (quasi) stationary state will be zero,
localized, or delocalized, depending on the values of the drift and other
parameters. The phase diagram is similar to that obtained by Nelson and
coworkers from a deterministic, spatially continuous model of a bacterial
population undergoing convection in a heterogeneous medium.Comment: 8 papes, 12 figure
Stationarity of SLE
A new method to study a stopped hull of SLE(kappa,rho) is presented. In this
approach, the law of the conformal map associated to the hull is invariant
under a SLE induced flow. The full trace of a chordal SLE(kappa) can be studied
using this approach. Some example calculations are presented.Comment: 14 pages with 1 figur
Thermal noise suppression: how much does it cost?
In order to stabilize the behavior of noisy systems, confining it around a
desirable state, an effort is required to suppress the intrinsic noise. This
noise suppression task entails a cost. For the important case of thermal noise
in an overdamped system, we show that the minimum cost is achieved when the
system control parameters are held constant: any additional deterministic or
random modulation produces an increase of the cost. We discuss the implications
of this phenomenon for those overdamped systems whose control parameters are
intrinsically noisy, presenting a case study based on the example of a Brownian
particle optically trapped in an oscillating potential.Comment: 6 page
Growth of uniform infinite causal triangulations
We introduce a growth process which samples sections of uniform infinite
causal triangulations by elementary moves in which a single triangle is added.
A relation to a random walk on the integer half line is shown. This relation is
used to estimate the geodesic distance of a given triangle to the rooted
boundary in terms of the time of the growth process and to determine from this
the fractal dimension. Furthermore, convergence of the boundary process to a
diffusion process is shown leading to an interesting duality relation between
the growth process and a corresponding branching process.Comment: 27 pages, 6 figures, small changes, as publishe
- …