2 research outputs found

    Time-resolved imaging of magnetization dynamics in double nanocontact spin torque vortex oscillator devices

    Get PDF
    This is the published version. Available from the American Physical Society via the DOI in this recordDouble nanocontact (NC) spin transfer vortex oscillator devices, in which NCs of 100-nm diameter have center-to-center separation ranging from 200 to 1100 nm, have been studied by means of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM). The NCs were positioned close to the edge of the top electrical contact so that the magnetization dynamics of the adjacent region could be probed optically. The electrical measurements showed different ranges of frequency operation for devices with different NC separations. For 900-nm NC separation, TRSKM showed magnetic contrast consistent with the formation of a magnetic vortex at each NC, while for 200-nm NC separation a lack of magnetic contrast near the NC region suggests that the magnetization dynamics occur closer to the NC and underneath the top contact. TRSKM also reveals the presence of additional localized dynamical features far from the NCs, which are not seen by electrical measurements; has not been reported previously for double NCs with different separations; and provides insight into how the dynamic state of the phase-locked oscillators is established and stabilized.Engineering and Physical Sciences Research Council (EPSRC)Ministry of Education, Chile and Commission for Scientific and Technological Research (CONICYT

    CoFeB-Based Spin Hall Nano-Oscillators

    No full text
    We demonstrate magnetization auto-oscillations driven by pure spin currents in spin Hall nano-oscillators based on CoFeB/Pt bilayers. Despite the very low anisotropic magnetoresistance of CoFeB, a substantial microwave signal power can be detected, even at room temperature, indicating that a sizable spin wave amplitude is generated. Spin torque ferromagnetic resonance measurements reveal that the generated auto-oscillation frequency lies below the ferromagnetic resonance frequency of CoFeB and is therefore well described by a self-localized spin wave bullet mode
    corecore