298 research outputs found

    Diffuse stellar component in galaxy clusters and the evolution of the most massive galaxies at z<~1

    Get PDF
    The high end of the stellar mass function of galaxies is observed to have little evolution since z~1. This represents a stringent constraint for merger--based models, aimed at explaining the evolution of the most massive galaxies in the concordance LambdaCDM cosmology. In this Letter we show that it is possible to remove the tension between the above observations and model predictions by allowing a fraction of stars to be scattered to the Diffuse Stellar Component (DSC) of galaxy clusters at each galaxy merger, as recently suggested by the analysis of N-body hydrodynamical simulations. To this purpose, we use the MORGANA model of galaxy formation in a minimal version, in which gas cooling and star formation are switched off after z=1. In this way, any predicted evolution of the galaxy stellar mass function is purely driven by mergers. We show that, even in this extreme case, the predicted degree of evolution of the high end of the stellar mass function is larger than that suggested by data. Assuming instead that a significant fraction, ~30 per cent, of stars are scattered in the DSC at each merger event, leads to a significant suppression of the predicted evolution, in better agreement with observational constraints, while providing a total amount of DSC in clusters which is consistent with recent observational determinations.Comment: 5 pages, figures included; ApJ Letters, in press. Revision: reference adde

    Unveiling Palomar 2: The Most Obscure Globular Cluster in the Outer Halo

    Get PDF
    We present the first color-magnitude study for Palomar 2, a distant and heavily obscured globular cluster near the Galactic anticenter. Our (V,V-I) color-magnitude diagram (CMD), obtained with the UH8K camera at the CFHT, reaches V(lim) = 24 and clearly shows the principal sequences of the cluster, though with substantial overall foreground absorption and differential reddening. The CMD morphology shows a well populated red horizontal branch with a sparser extension to the blue, similar to clusters such as NGC 1261, 1851, or 6229 with metallicities near [Fe/H] = -1.3.Fromanaverageofseveralindicators,weestimatetheforegroundreddeningatE(B−V)=1.24+−0.07andobtainatruedistancemodulus(m−M)0=17.1+−0.3. From an average of several indicators, we estimate the foreground reddening at E(B-V) = 1.24 +- 0.07 and obtain a true distance modulus (m-M)_0 = 17.1 +- 0.3, placing it about 34 kpc from the Galactic center. We use starcounts of the bright stars to measure the core radius, half-mass radius, and central concentration of the cluster. Its integrated luminosity is M_V = -7.9, making it clearly brighter and more massive than most other clusters in the outer halo.Comment: 25 pages, aastex, with 8 postscript figures; accepted for publication in AJ, September 1997. Also available by e-mail from [email protected]. Please consult Harris directly for (big) postscript files of Figures 1a,b (the images of the cluster

    The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond)

    Get PDF
    We describe a program to measure surface brightness fluctuation (SBF) distances to galaxies observed in the Next Generation Virgo Cluster Survey (NGVS), a photometric imaging survey covering 104 deg2104~deg^2 of the Virgo cluster in the u∗,g,i,z{u}^*,g,i,z bandpasses with the Canada-France Hawaii Telescope. We describe the selection of the sample galaxies, the procedures for measuring the apparent ii-band SBF magnitude iˉ\bar{i}, and the calibration of the absolute Mˉi\bar{M}_i as a function of observed stellar population properties. The multi-band NGVS data set provides multiple options for calibrating the SBF distances, and we explore various calibrations involving individual color indices as well as combinations of two different colors. Within the color range of the present sample, the two-color calibrations do not significantly improve the scatter with respect to wide-baseline, single-color calibrations involving u∗u^{*}. We adopt the u∗−z{u}^*{-}z calibration as reference for the present galaxy sample, with an observed scatter of 0.11 mag. For a few cases that lack good u∗{u}^* photometry, we use an alternative relation based on a combination of g−ig{-}i and g−zg{-}z colors, with only a slightly larger observed scatter of 0.12 mag. The agreement of our measurements with the best existing distance estimates provides confidence that our measurements are accurate. We present a preliminary catalog of distances for 89 galaxies brighter than BT≈13.0B_T\approx13.0 mag within the survey footprint, including members of the background M and W Clouds at roughly twice the distance of the main body of the Virgo cluster. The extension of the present work to fainter and bluer galaxies is in progress.Comment: ApJ accepte

    Vortex deformation and breaking in superconductors: A microscopic description

    Full text link
    Vortex breaking has been traditionally studied for nonuniform critical current densities, although it may also appear due to nonuniform pinning force distributions. In this article we study the case of a high-pinning/low-pinning/high-pinning layered structure. We have developed an elastic model for describing the deformation of a vortex in these systems in the presence of a uniform transport current density JJ for any arbitrary orientation of the transport current and the magnetic field. If JJ is above a certain critical value, JcJ_c, the vortex breaks and a finite effective resistance appears. Our model can be applied to some experimental configurations where vortex breaking naturally exists. This is the case for YBa2_2Cu3_3O7−x_{7-x} (YBCO) low angle grain boundaries and films on vicinal substrates, where the breaking is experienced by Abrikosov-Josephson vortices (AJV) and Josephson string vortices (SV), respectively. With our model, we have experimentally extracted some intrinsic parameters of the AJV and SV, such as the line tension ϵl\epsilon_l and compared it to existing predictions based on the vortex structure.Comment: 11 figures in 13 files; minor changes after printing proof

    Photometry and the Metallicity Distribution of the Outer Halo of M31. II. The 30 Kpc Field

    Full text link
    We present the results of a wide-field (V,I) photometric study of the red-giant branch (RGB) stars in the outer halo of M31, in a field located 30 to 35 kpc from the center of the galaxy along the southeast minor axis. At this remote location, we find that RGB stars belonging to M31 are sparsely but definitely present, after statistical subtraction of field contamination. We derive the metallicity distribution (MDF) for the halo stars using interpolation within a standard (I,V-I) grid of RGB evolutionary tracks. The halo MDF is quite broad but dominated by a moderately high-metallicity population peaking at [m/H] ~ -0.5, strikingly different from the [m/H] ~ -1.3 level which characterizes the outer halo of the Milky Way. However,the shape and peak metallicity for this region are entirely similar to those found in other studies for the inner regions of the M31 halo, particularly our previous study of a 20-kpc region (Durrell, Harris, & Pritchet 2001) employing similar data. In summary, we find no evidence for a metallicity gradient or systematic change in the MDF out to quite large distances in the M31 halo: it appears to be a homogeneous and moderately metal-rich subsystem of the galaxy at all locations. The star counts in the 30-kpc field are also consistent with the r^1/4 law that fits the interior regions of the M31 spheroid surface brightness profile. The metal-rich MDF and the r^1/4 spheroid suggests M31 more strongly resembles a giant elliptical galaxy than other, Milky-Way-like, spirals.Comment: 28 pages, including 9 figures; accepted for publication in the Astronomical Journa

    Photometry and the Metallicity Distribution of the Outer Halo of M31

    Get PDF
    We have conducted a wide-field CCD-mosaic study of the resolved red-giant branch (RGB) stars of M31, in a field located 20 kpc from the nucleus along the SE minor axis. In our (I, V-I) color-magnitude diagram, RGB stars in the top three magnitudes of the M31 halo are strongly present. Photometry of a more distant control field to subtract field contamination is used to derive the `cleaned' luminosity function and metallicity distribution function (MDF) of the M31 halo field. From the color distribution of the foreground Milky Way halo stars, we find a reddening E(V-I)= 0.10 +/- 0.02 for this field, and from the luminosity of the RGB tip, we determine a distance modulus (m-M)_o = 24.47 +/- 0.12 (= 783 +/- 43 kpc). The MDF is derived from interpolation within an extensive new grid of RGB models (Vandenberg et al. 2000). The MDF is dominated by a moderately high-metallicity population ([m/H]~ -0.5) found previously in more interior M31 halo/bulge fields, and is much more metal-rich than the [m/H]~ -1.5 level in the Milky Way halo. A significant (~30% - 40%, depending on AGB star contribution) metal-poor population is also present. To first order, the shape of the MDF resembles that predicted by a simple, single-component model of chemical evolution starting from primordial gas with an effective yield y=0.0055. It strongly resembles the MDF recently found for the outer halo of the giant elliptical NGC 5128 (Harris et al. 2000), though NGC 5128 has an even lower fraction of low-metallicity stars. Intriguingly, in both NGC 5128 and M31, the metallicity distribution of the globular clusters in M31 does not match the halo stars; the clusters are far more heavily weighted to metal-poor objects. We suggest similarities in the formation and early evolution of massive, spheroidal stellar systems.Comment: to appear in the Astronomical Journal; 43 pages, including 15 figure

    Methane in underground air in Gibraltar karst

    Get PDF
    AbstractLittle is known about the abundance and geochemical behaviour of gaseous methane in the unsaturated zone of karst terrains. The concentrations and δ13C of methane in background atmosphere, soil air and cave air collected at monthly intervals over a 4yr period are reported for St. Michaels Cave, Gibraltar, where the regional climate, surface and cave processes are well documented. Methane concentrations measured in Gibraltar soil are lower than the local background atmosphere average of 1868ppb and fall to <500ppb. The abundance–δ13C relationships in soil air methane lack strong seasonality and suggest mixing between atmosphere and a 12C depleted residue after methanotrophic oxidation. Methane abundances in cave air are also lower than the local background atmosphere average but show strong seasonality that is related to ventilation-controlled annual cycles shown by CO2. Cave air methane abundances are lowest in the CO2-rich air that outflows from cave entrances during the winter and show strong inverse relationship between CH4 abundance and δ13C which is diagnostic of methanotrophy within the cave and unsaturated zone. Anomalies in the soil and cave air seasonal patterns characterised by transient elevated CH4 mixing ratios with δ13C values lower than −47‰ suggests intermittent biogenic input. Dynamically ventilated Gibraltar caves may act as a net sink for atmospheric methane

    The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-Mass Early-Type Galaxies from Gemini GMOS-IFU Spectroscopy

    Full text link
    We present Gemini GMOS-IFU data of eight compact low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyse their stellar kinematics, stellar population, and present two-dimensional maps of these properties covering the central 5"x 7" region. We find a large variety of kinematics: from non- to highly-rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally-concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the lambdaR parameter and find six fast-rotators and two slow-rotators, one having a thin counter-rotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M>1010M>10^{10}\Msun) ETGs from the A3D sample. The compact low-mass ETGs in our sample are located in high density regions, often close to a massive galaxy and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.Comment: Accepted in ApJ, 19 pages, 10 figure
    • …
    corecore