339 research outputs found
Recommended from our members
Evaluating femtosecond laser ablation of graphene on SiO<inf>2</inf>/Si substrate
We demonstrate a uniform single layer micropattern of graphene on 300 nm thick SiO2 on a Si substrate using a 1030 nm, 280 fs laser. The cutting process was conducted in air, the pattern defined through the motion of a high-precision translation stage. Approximately 1.6 μm wide graphene microchannels were cut with uniform widths and well defined edges. The ablation threshold of graphene was determined to be 66–120 mJ/cm2, at which the selective removal of graphene was achieved without damage to the SiO2/Si substrate. Scanning electron microscopy images revealed high quality cuts (standard deviation 40 nm) with little damage or re-deposition. Raman maps showed no discernible laser induced damage in the graphene within the ablation zone. Atomic force microscopy revealed an edge step height ranging from less than 2 to 10 nm, suggesting little removal of SiO2 and no damage to the silicon (the central path showed sub ablation threshold swelling). The effect of the ultrafast laser on the surface potential at the cut edge has been measured and it showed a distinguishable boundary.This work was supported by The Engineering and Physical Sciences Research Council (EPSRC) and National University of Defence Technology (NUDT). The authors also thank Cambridge Graphene Centre (CGC).This is the final version of the article. It first appeared from the American Institute of Physics via http://dx.doi.org/10.2351/1.494451
Temperature dependence of the ohmic conductivity and activation energy of Pb1+y(Zr0.3Ti0.7)O3 thin films
The ohmic conductivity of the sol-gel derived Pb1+y(Zr0.3Ti0.7)O3 thin films
(with the excess lead y=0.0 to 0.4) are investigated using low frequency small
signal alternate current (AC) and direct current (DC) methods. Its temperature
dependence shows two activation energies of 0.26 and 0.12 eV depending on
temperature range and excess Pb levels. The former is associated with Pb3+
acceptor centers, while the latter could be due to a different defect level yet
to be identified.Comment: 13 pages, 3 figures, PostScript. Submitted to Applied Physics Letter
Noise spectroscopy and interlayer phase-coherence in bilayer quantum Hall systems
Bilayer quantum Hall systems develop strong interlayer phase-coherence when
the distance between layers is comparable to the typical distance between
electrons within a layer. The phase-coherent state has until now been
investigated primarily via transport measurements. We argue here that
interlayer current and charge-imbalance noise studies in these systems will be
able to address some of the key experimental questions. We show that the
characteristic frequency of current-noise is that of the zero wavevector
collective mode, which is sensitive to the degree of order in the system. Local
electric potential noise measured in a plane above the bilayer system on the
other hand is sensitive to finite-wavevector collective modes and hence to the
soft-magnetoroton picture of the order-disorder phase transition.Comment: 5 pages, 2 figure
A Study of Labour Force Flows 1961-80. Quarterly Economic Commentary Special Article, May 1982
A Study of Labour Force Flows
Recommended from our members
Overview of Crosstalk Between Multiple Factor of Transcytosis in Blood Brain Barrier.
Blood brain barrier (BBB) conserves unique regulatory system to maintain barrier tightness while allowing adequate transport between neurovascular units. This mechanism possess a challenge for drug delivery, while abnormality may result in pathogenesis. Communication between vascular and neural system is mediated through paracellular and transcellular (transcytosis) pathway. Transcytosis itself showed dependency with various components, focusing on caveolae-mediated. Among several factors, intense communication between endothelial cells, pericytes, and astrocytes is the key for a normal development. Regulatory signaling pathway such as VEGF, Notch, S1P, PDGFβ, Ang/Tie, and TGF-β showed interaction with the transcytosis steps. Recent discoveries showed exploration of various factors which has been proven to interact with one of the process of transcytosis, either endocytosis, endosomal rearrangement, or exocytosis. As well as providing a hypothetical regulatory pathway between each factors, specifically miRNA, mechanical stress, various cytokines, physicochemical, basement membrane and junctions remodeling, and crosstalk between developmental regulatory pathways. Finally, various hypotheses and probable crosstalk between each factors will be expressed, to point out relevant research application (Drug therapy design and BBB-on-a-chip) and unexplored terrain
Electronic spin precession in semiconductor quantum dots with spin-orbit coupling
The electronic spin precession in semiconductor dots is strongly affected by
the spin-orbit coupling. We present a theory of the electronic spin resonance
at low magnetic fields that predicts a strong dependence on the dot occupation,
the magnetic field and the spin-orbit coupling strength. Coulomb interaction
effects are also taken into account in a numerical approach.Comment: 5 pages, 4 figure
Recommended from our members
Adsorption of 4-n-Nonylphenol, Carvacrol, and Ethanol onto Iron Oxide from Nonaqueous Hydrocarbon Solvents.
The adsorption of 4-n-nonylphenol (4NP), carvacrol, and ethanol onto the surface of iron oxide from nonaqueous solutions is presented. It is found that adsorption of 4NP from alkanes is strong and proceeds to monolayer formation, where the molecules are essentially "upright". However, at high relative concentrations, ethanol successfully out-competes 4NP for the iron oxide surface. Estimates of the enthalpy and entropy of binding of 4NP were found to be exothermic and entropically disfavored. Sum frequency generation vibrational spectroscopy data indicate some evidence of binding through a phenolate anion, despite the nonpolar, nonaqueous solvent. Carvacrol is also found to adsorb as a monolayer where the molecules are lying "flat". The adsorption of ethanol onto iron oxide from dodecane was investigated through the use of quantitative NMR, which is a convenient analytical technique for measuring adsorption isotherms. It was concluded that ethanol does not form adsorbed monolayers on the surface. Instead, it partitions onto the surface as a surface-enhanced local phase separation related to its poor solubility in alkane solvents.B
Joule-assisted silicidation for short-channel silicon nanowire devices
We report on a technique enabling electrical control of the contact
silicidation process in silicon nanowire devices. Undoped silicon nanowires
were contacted by pairs of nickel electrodes and each contact was selectively
silicided by means of the Joule effect. By a realtime monitoring of the
nanowire electrical resistance during the contact silicidation process we were
able to fabricate nickel-silicide/silicon/nickel- silicide devices with
controlled silicon channel length down to 8 nm.Comment: 6 pages, 4 figure
- …