34 research outputs found

    Immersion education outcomes and the Gaelic community:Identities and language ideologies among Gaelic-medium educated adults in Scotland

    Get PDF
    Scholars have consistently theorised that language ideologies can influence the ways in which bilingual speakers in minority language settings identify and engage with the linguistic varieties available to them. Research conducted by the author examined the interplay of language use and ideologies among a purposive sample of adults who started in Gaelic medium education during the first years of its availability. Crucially, the majority of participants’ Gaelic use today is limited, although notable exceptions were found among individuals who were substantially socialised in the language at home during childhood, and a small number of new speakers. In this paper, I draw attention to some of the language ideologies that interviewees conveyed when describing their cultural identifications with Gaelic. I argue that the ideologies that informants express seem to militate against their more frequent use of the language and their association with the wider Gaelic community. In particular, I discuss interviewees’ negative perceptions of the traditionally defined, ethnolinguistic identity category ‘Gael(s)’ in their expression of language ideologies and identities, and the implications of this finding for other contexts of minority language revitalisation

    Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli

    Get PDF
    Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis

    Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    Get PDF
    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag−/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.National Institutes of Health (U.S.) (NIH grant R01-CA075576)National Institutes of Health (U.S.) (NIH grant R01-CA055042)National Institutes of Health (U.S.) (NIH grant R01-CA149261)National Institutes of Health (U.S.) (NIH grant P30-ES00002)National Institutes of Health (U.S.) (NIH grant P30-ES02109)National Center for Research Resources (U.S.) (grant number M01RR-01066)National Center for Research Resources (U.S.) (grant number UL1 RR025758, Harvard Clinical and Translational Science Center

    Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds

    Get PDF
    © Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds

    Molecular cloning and sequence analysis of mutant alleles of the fission yeast cdc2 protein kinase gene: implications for cdc2+ protein structure and function

    No full text
    The cdc2+ gene function plays a central role in the control of the mitotic cell cycle of the fission yeast Schizosaccharomyces pombe. Recessive temperature-sensitive mutations in the cdc2 gene cause cell cycle arrest when shifted to the restrictive temperature, while a second class of mutations within the cdc2 gene causes a premature advancement into mitosis. Previously the cdc2+ gene has been cloned and has been shown to encode a 34 kDa phosphoprotein with in vitro protein kinase activity. Here we describe the cloning of 11 mutant alleles of the cdc2 gene using two simple methods, one of which is presented here for the first time. We have sequenced these alleles and find a variety of single amino acid substitutions mapping throughout the cdc2 protein. Analysis of these mutations has identified a number of regions within the cdc2 protein that are important for cdc2+ activity and regulation. These include regions which may be involved in the interaction of the cdc2+ gene product with the proteins encoded by the wee1+, cdc13+ and suc1+ genes
    corecore