4 research outputs found

    Moderate traumatic brain injury triggers long-term risks for the development of peripheral pain sensitivity and depressive-like behavior in mice

    Get PDF
    Funding Information: This study was supported by the framework of EU-ERA-NET NEURON CnsAflame and TRAINS. Publisher Copyright: Copyright © 2022 Stelfa, Svalbe, Vavers, Duritis, Dambrova and Zvejniece.As traumatic brain injury (TBI) is one of the major causes of permanent disability, there is increasing interest in the long-term outcome of TBI. While motor deficits, cognitive impairment and longer-term risks of neurodegenerative disease are well-established consequences in animal models of TBI, pain is discussed less often despite its high prevalence. The current study addresses the need to characterize the extent of chronic pain and long-term behavioral impairments induced by moderate lateral fluid percussion injury (latFPI) in mice up to 12 months post-TBI and evaluates the validity of the model. Adult male BALB/c mice were subjected to latFPI, and the results were compared with outcomes in sham-operated mice. Mouse behavior was assessed at 1 and 7 days and 1, 3, 6, 9, and 12 months post-injury using sensory-motor (neurological severity score, NSS), cold (acetone) and mechanical sensitivity (von Frey), depressive-like behavior (tail suspension), locomotor (open field), motor coordination (rotarod) and cognitive (Morris water maze, y-maze, passive avoidance) tests. Animals with TBI demonstrated significantly higher NSS than the sham-operated group for up to 9 months after the injury. Cold sensitization was significantly increased in the contralateral hind paw in the TBI group compared to that of the sham group at 3, 6, and 9 months after TBI. In the von Frey test, the withdrawal threshold of the contralateral and ipsilateral hind paws was reduced at 6 months after TBI and lasted for up to 12 months post-injury. latFPI induced progressive depressive-like behavior starting at 6 months post-injury. No significant deficits were observed in memory, motor coordination or locomotion over the 12-month assessment period. The present study demonstrates that moderate TBI in mice elicits long-lasting impairment of sensory-motor function, results in progressive depression and potentiates peripheral pain. Hence, the latFPI model provides a relevant preclinical setting for the study of the link between brain injury and chronic sequelae such as depression and peripheral pain.publishersversionPeer reviewe

    The biopsy of the boar testes using ultrasonographic examination

    No full text
    The biopsy of live animal testes is an important clinical manipulation to control spermatogenesis and reproductive system pathologies. The aim was to develop a method of boar testes biopsy using a biopsy gun with ultrasound guidance and to investigate the influence of this procedure on the boar testes parenchyma and quality of ejaculate. The biopsy was carried out in six 8-month-old boars. Fourteen days prior to and 21 days after biopsy, the quality of ejaculate was examined (weight of ejaculate; concentration and motility of spermatozoa) with a seven-day intervals. Ultrasound images of the testes parenchyma were recorded three times: directly before and 15 minutes after the biopsy, then 21 days after the procedure. The testes biopsies of generally anesthetized boars were performed with the biopsy gun for needle biopsy with a 12cm long, disposable 16-gauge needle 1.8mm in diameter (Vitesse) through 1cm skin incision in the depth of 1.2-1.6cm of parenchyma. Fifteen minutes after the biopsy, macroscopic injures of the parenchyma of all the boar testes were not detected in the ultrasound image. Twenty one days after biopsy, the hyperechogenic line 0.1-0.2cm in diameter was seen in the testes parenchyma of six boars in the depth of 1.2-1.6cm. The biopsy of boar testes did not influence the quality of boars ejaculate. The ultrasonographic examination of boar testicles before the biopsy reduced possibilities to traumatize large blood vessels of the testes. A perfect boar testicular biopsy was easy to perform using ultrasonographic examination in the pigsty conditions

    Comparative study of glucose transporters GLUT-2 and GLUT-5 in ostriches gastrointestinal tract

    No full text
    The knowledge about transport of sugars in animals and birds gastrointestinal tract is very important for science as carbohydrates are the main energy source of food. Since until now there is few information about the localization of glucose transporters - integral membrane proteins that mediate the transport of glucose and related substances across the cellular membranes - in birds gastrointestinal tract, the aim of the present study was to localize glucose transporters-2 and -5 (GLUT-2 and -5) in three parts of the ostriches gastrointestinal tract – proventriculus, duodenum and ileum - comparatively in ostrich chicken in their early ontogenesis period. Material from the superficial gland zone of the proventriculus, duodenum and terminal zone of the ileum were collected from eight female ostriches (Struthio camelus var. Domesticus): two chickens after hatching, three 7 and three 30-days old ostriches. The material was fixed with 10% formalin, embedded into paraffin, slices 7 μm thick were cut followed by immunohistochemical staining with polyclonal primary antibodies Rabbit anti-GLUT-2 and Rabbit anti-GLUT-5, carried out according to the manufacturers guidelines (IHC kit, Abcam, UK). The results showed that the staining for both antibodies was weaker in all parts of the gastrointestinal tract of ostriches after hatching compared to 7 and 30 days old ostriches showing that the gastrointestinal tract of ostriches immediately after hatching is not entirely capable of transportation of carbohydrates. The results of our study may indicate the possibility of a close relationship between feeding and the ability to transport sugars in the gastrointestinal tract

    Data_Sheet_1_Moderate traumatic brain injury triggers long-term risks for the development of peripheral pain sensitivity and depressive-like behavior in mice.docx

    No full text
    As traumatic brain injury (TBI) is one of the major causes of permanent disability, there is increasing interest in the long-term outcome of TBI. While motor deficits, cognitive impairment and longer-term risks of neurodegenerative disease are well-established consequences in animal models of TBI, pain is discussed less often despite its high prevalence. The current study addresses the need to characterize the extent of chronic pain and long-term behavioral impairments induced by moderate lateral fluid percussion injury (latFPI) in mice up to 12 months post-TBI and evaluates the validity of the model. Adult male BALB/c mice were subjected to latFPI, and the results were compared with outcomes in sham-operated mice. Mouse behavior was assessed at 1 and 7 days and 1, 3, 6, 9, and 12 months post-injury using sensory-motor (neurological severity score, NSS), cold (acetone) and mechanical sensitivity (von Frey), depressive-like behavior (tail suspension), locomotor (open field), motor coordination (rotarod) and cognitive (Morris water maze, y-maze, passive avoidance) tests. Animals with TBI demonstrated significantly higher NSS than the sham-operated group for up to 9 months after the injury. Cold sensitization was significantly increased in the contralateral hind paw in the TBI group compared to that of the sham group at 3, 6, and 9 months after TBI. In the von Frey test, the withdrawal threshold of the contralateral and ipsilateral hind paws was reduced at 6 months after TBI and lasted for up to 12 months post-injury. latFPI induced progressive depressive-like behavior starting at 6 months post-injury. No significant deficits were observed in memory, motor coordination or locomotion over the 12-month assessment period. The present study demonstrates that moderate TBI in mice elicits long-lasting impairment of sensory-motor function, results in progressive depression and potentiates peripheral pain. Hence, the latFPI model provides a relevant preclinical setting for the study of the link between brain injury and chronic sequelae such as depression and peripheral pain.</p
    corecore