134 research outputs found

    Wavelet transforms in a critical interface model for Barkhausen noise

    Full text link
    We discuss the application of wavelet transforms to a critical interface model, which is known to provide a good description of Barkhausen noise in soft ferromagnets. The two-dimensional version of the model (one-dimensional interface) is considered, mainly in the adiabatic limit of very slow driving. On length scales shorter than a crossover length (which grows with the strength of surface tension), the effective interface roughness exponent ζ\zeta is ≃1.20\simeq 1.20, close to the expected value for the universality class of the quenched Edwards-Wilkinson model. We find that the waiting times between avalanches are fully uncorrelated, as the wavelet transform of their autocorrelations scales as white noise. Similarly, detrended size-size correlations give a white-noise wavelet transform. Consideration of finite driving rates, still deep within the intermittent regime, shows the wavelet transform of correlations scaling as 1/f1.51/f^{1.5} for intermediate frequencies. This behavior is ascribed to intra-avalanche correlations.Comment: RevTeX, 10 pages, 9 .eps figures; Physical Review E, to be publishe

    Dynamic hysteresis in Finemet thin films

    Full text link
    We performed a series of dynamic hysteresis measurements on three series of Finemet films with composition Fe73.5_{73.5}Cu1_1Nb3_3Si13.5_13.5B9_9, using both the longitudinal magneto-optical Kerr effect (MOKE) and the inductive fluxometric method. The MOKE dynamic hysteresis loops show a more marked variability with the frequency than the inductive ones, while both measurements show a similar dependence on the square root of frequency. We analyze these results in the frame of a simple domain wall depinning model, which accounts for the general behavior of the data.Comment: 3 pages, 3 figure

    Beyond power laws: Universality in the average avalanche shape

    Full text link
    We report the measurement of multivariable scaling functions for the temporal average shape of Barkhausen noise avalanches, and show that they are consistent with the predictions of simple mean-field theories. We bypass the confounding factors of time-retarded interactions (eddy currents) by measuring thin permal- loy films, and bypass thresholding effects and amplifier distortions by applying Wiener deconvolution. We find experimental shapes that are approximately symmetric, and track the evolution of the scaling function. We solve a mean- field theory for the magnetization dynamics and calculate the form of the scaling function in the presence of a demagnetizing field and a finite field ramp-rate, yielding quantitative agreement with the experiment.Comment: 13 pages, 14 figure

    String spectra near some null cosmological singularities

    Full text link
    We construct cosmological spacetimes with null Kasner-like singularities as purely gravitational solutions with no other background fields turned on. These can be recast as anisotropic plane-wave spacetimes by coordinate transformations. We analyse string quantization to find the spectrum of string modes in these backgrounds. The classical string modes can be solved for exactly in these time-dependent backgrounds, which enables a detailed study of the near singularity string spectrum, (time-dependent) oscillator masses and wavefunctions. We find that for low lying string modes(finite oscillation number), the classical near-singularity string mode functions are non-divergent for various families of singularities. Furthermore, for any infinitesimal regularization of the vicinity of the singularity, we find a tower of string modes of ultra-high oscillation number which propagate essentially freely in the background. The resulting picture suggests that string interactions are non-negligible near the singularity.Comment: Latex, 30pgs; v2. minor clarifications, references adde

    1/f1/f noise and avalanche scaling in plastic deformation

    Get PDF
    We study the intermittency and noise of dislocation systems undergoing shear deformation. Simulations of a simple two-dimensional discrete dislocation dynamics model indicate that the deformation rate exhibits a power spectrum scaling of the type 1/fα1/f^{\alpha}. The noise exponent is far away from a Lorentzian, with α≈1.5\alpha \approx 1.5. This result is directly related to the way the durations of avalanches of plastic deformation activity scale with their size.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Is demagnetization an efficient optimization method?

    Full text link
    Demagnetization, commonly employed to study ferromagnets, has been proposed as the basis for an optimization tool, a method to find the ground state of a disordered system. Here we present a detailed comparison between the ground state and the demagnetized state in the random field Ising model, combing exact results in d=1d=1 and numerical solutions in d=3d=3. We show that there are important differences between the two states that persist in the thermodynamic limit and thus conclude that AC demagnetization is not an efficient optimization method.Comment: 2 pages, 1 figur

    Investigation of scaling properties of hysteresis in Finemet thin films

    Full text link
    We study the behavior of hysteresis loops in Finemet Fe73.5_{73.5}Cu1_1Nb3_3Si18.5_{18.5}B4_4 thin films by using a fluxometric setup based on a couple of well compensated pickup coils. The presence of scaling laws of the hysteresis area is investigated as a function of the amplitude and frequency of the applied field, considering sample thickness from about 20 nm to 5 μ\mum. We do not observe any scaling predicted by theoretical models, while dynamic loops show a logarithmic dependence on the frequency.Comment: 2 pages, 2 figure

    Helium condensation in aerogel: avalanches and disorder-induced phase transition

    Full text link
    We present a detailed numerical study of the elementary condensation events (avalanches) associated to the adsorption of 4^4He in silica aerogels. We use a coarse-grained lattice-gas description and determine the nonequilibrium behavior of the adsorbed gas within a local mean-field analysis, neglecting thermal fluctuations and activated processes. We investigate the statistical properties of the avalanches, such as their number, size and shape along the adsorption isotherms as a function of gel porosity, temperature, and chemical potential. Our calculations predict the existence of a line of critical points in the temperature-porosity diagram where the avalanche size distribution displays a power-law behavior and the adsorption isotherms have a universal scaling form. The estimated critical exponents seem compatible with those of the field-driven Random Field Ising Model at zero temperature.Comment: 16 pages, 14 figure

    Finite driving rates in interface models of Barkhausen noise

    Full text link
    We consider a single-interface model for the description of Barkhausen noise in soft ferromagnetic materials. Previously, the model had been used only in the adiabatic regime of infinitely slow field ramping. We introduce finite driving rates and analyze the scaling of event sizes and durations for different regimes of the driving rate. Coexistence of intermittency, with non-trivial scaling laws, and finite-velocity interface motion is observed for high enough driving rates. Power spectra show a decay ∼ω−t\sim \omega^{-t}, with t<2t<2 for finite driving rates, revealing the influence of the internal structure of avalanches.Comment: 7 pages, 6 figures, RevTeX, final version to be published in Phys. Rev.
    • …
    corecore