63 research outputs found

    New multicritical matrix models and multicritical 2d CDT

    Get PDF
    We define multicritical CDT models of 2d quantum gravity and show that they are a special case of multicritical generalized CDT models obtained from the new scaling limit, the so-called "classical" scaling limit, of matrix models. The multicritical behavior agrees with the multicritical behavior of the so-called branched polymers.Comment: 16 pages, 4 figures. References adde

    Condensation in nongeneric trees

    Full text link
    We study nongeneric planar trees and prove the existence of a Gibbs measure on infinite trees obtained as a weak limit of the finite volume measures. It is shown that in the infinite volume limit there arises exactly one vertex of infinite degree and the rest of the tree is distributed like a subcritical Galton-Watson tree with mean offspring probability m<1m<1. We calculate the rate of divergence of the degree of the highest order vertex of finite trees in the thermodynamic limit and show it goes like (1m)N(1-m)N where NN is the size of the tree. These trees have infinite spectral dimension with probability one but the spectral dimension calculated from the ensemble average of the generating function for return probabilities is given by 2β22\beta -2 if the weight wnw_n of a vertex of degree nn is asymptotic to nβn^{-\beta}.Comment: 57 pages, 14 figures. Minor change

    Growth of uniform infinite causal triangulations

    Full text link
    We introduce a growth process which samples sections of uniform infinite causal triangulations by elementary moves in which a single triangle is added. A relation to a random walk on the integer half line is shown. This relation is used to estimate the geodesic distance of a given triangle to the rooted boundary in terms of the time of the growth process and to determine from this the fractal dimension. Furthermore, convergence of the boundary process to a diffusion process is shown leading to an interesting duality relation between the growth process and a corresponding branching process.Comment: 27 pages, 6 figures, small changes, as publishe

    Random walks on combs

    Full text link
    We develop techniques to obtain rigorous bounds on the behaviour of random walks on combs. Using these bounds we calculate exactly the spectral dimension of random combs with infinite teeth at random positions or teeth with random but finite length. We also calculate exactly the spectral dimension of some fixed non-translationally invariant combs. We relate the spectral dimension to the critical exponent of the mass of the two-point function for random walks on random combs, and compute mean displacements as a function of walk duration. We prove that the mean first passage time is generally infinite for combs with anomalous spectral dimension.Comment: 42 pages, 4 figure

    The spectral dimension of random brushes

    Full text link
    We consider a class of random graphs, called random brushes, which are constructed by adding linear graphs of random lengths to the vertices of Z^d viewed as a graph. We prove that for d=2 all random brushes have spectral dimension d_s=2. For d=3 we have {5\over 2}\leq d_s\leq 3 and for d\geq 4 we have 3\leq d_s\leq d.Comment: 15 pages, 1 figur

    An Effective Model for Crumpling in Two Dimensions?

    Full text link
    We investigate the crumpling transition for a dynamically triangulated random surface embedded in two dimensions using an effective model in which the disordering effect of the XX variables on the correlations of the normals is replaced by a long-range ``antiferromagnetic'' term. We compare the results from a Monte Carlo simulation with those obtained for the standard action which retains the XX's and discuss the nature of the phase transition.Comment: 5 page

    Summing Over Inequivalent Maps in the String Theory Interpretation of Two Dimensional QCD

    Full text link
    Following some recent work by Gross, we consider the partition function for QCD on a two dimensional torus and study its stringiness. We present strong evidence that the free energy corresponds to a sum over branched surfaces with small handles mapped into the target space. The sum is modded out by all diffeomorphisms on the world-sheet. This leaves a sum over disconnected classes of maps. We prove that the free energy gives a consistent result for all smooth maps of the torus into the torus which cover the target space pp times, where pp is prime, and conjecture that this is true for all coverings. Each class can also contain integrations over the positions of branch points and small handles which act as ``moduli'' on the surface. We show that the free energy is consistent for any number of handles and that the first few leading terms are consistent with contributions from maps with branch points.Comment: 17 pages, 5 eps figures contained in a uuencoded file, UVA-HET-92-1

    The Extended Loop Group: An Infinite Dimensional Manifold Associated with the Loop Space

    Get PDF
    A set of coordinates in the non parametric loop-space is introduced. We show that these coordinates transform under infinite dimensional linear representations of the diffeomorphism group. An extension of the group of loops in terms of these objects is proposed. The enlarged group behaves locally as an infinite dimensional Lie group. Ordinary loops form a subgroup of this group. The algebraic properties of this new mathematical structure are analized in detail. Applications of the formalism to field theory, quantum gravity and knot theory are considered.Comment: The resubmited paper contains the title and abstract, that were omitted in the previous version. 42 pages, report IFFI/93.0

    Relating Covariant and Canonical Approaches to Triangulated Models of Quantum Gravity

    Get PDF
    In this paper explore the relation between covariant and canonical approaches to quantum gravity and BFBF theory. We will focus on the dynamical triangulation and spin-foam models, which have in common that they can be defined in terms of sums over space-time triangulations. Our aim is to show how we can recover these covariant models from a canonical framework by providing two regularisations of the projector onto the kernel of the Hamiltonian constraint. This link is important for the understanding of the dynamics of quantum gravity. In particular, we will see how in the simplest dynamical triangulations model we can recover the Hamiltonian constraint via our definition of the projector. Our discussion of spin-foam models will show how the elementary spin-network moves in loop quantum gravity, which were originally assumed to describe the Hamiltonian constraint action, are in fact related to the time-evolution generated by the constraint. We also show that the Immirzi parameter is important for the understanding of a continuum limit of the theory.Comment: 28 pages, 10 figure

    Smooth Random Surfaces from Tight Immersions?

    Full text link
    We investigate actions for dynamically triangulated random surfaces that consist of a gaussian or area term plus the {\it modulus} of the gaussian curvature and compare their behavior with both gaussian plus extrinsic curvature and ``Steiner'' actions.Comment: 7 page
    corecore