425 research outputs found

    Effects of dietary curcumin or N-acetylcysteine on NF-ÎșB activity and contractile performance in ambulatory and unloaded murine soleus

    Get PDF
    BACKGROUND: Unloading of skeletal muscle causes atrophy and loss of contractile function. In part, this response is believed to be mediated by the transcription factor nuclear factor-kappa B (NF-ÎșB). Both curcumin, a component of the spice turmeric, and N-acetylcysteine (NAC), an antioxidant, inhibit activation of NF-ÎșB by inflammatory stimuli, albeit by different mechanisms. In the present study, we tested the hypothesis that dietary curcumin or NAC supplementation would inhibit unloading-induced NF-ÎșB activity in skeletal muscle and thereby protect muscles against loss of mass and function caused by prolonged unloading. METHODS: We used hindlimb suspension to unload the hindlimb muscles of adult mice. Animals had free access to drinking water or drinking water supplemented with 1% NAC and to standard laboratory diet or diet supplemented with 1% curcumin. For 11 days, half the animals in each dietary group were suspended by the tail (unloaded) and half were allowed to ambulate freely. RESULTS: Unloading caused a 51–53% loss of soleus muscle weight and cross-sectional area relative to freely-ambulating controls. Unloading also decreased total force and force per cross-sectional area developed by soleus. Curcumin supplementation decreased NF-ÎșB activity measured in peripheral tissues of ambulatory mice by gel shift analysis. In unloaded animals, curcumin supplementation did not inhibit NF-ÎșB activity or blunt the loss of muscle mass in soleus. In contrast, NAC prevented the increase in NF-ÎșB activity induced by unloading but did not prevent losses of muscle mass or function. CONCLUSION: In conclusion, neither dietary curcumin nor dietary NAC prevents unloading-induced skeletal muscle dysfunction and atrophy, although dietary NAC does prevent unloading induced NF-ÎșB activation

    Effects of dietary curcumin or N-acetylcysteine on NF-kappaB activity and contractile performance in ambulatory and unloaded murine soleus

    Get PDF
    BACKGROUND: Unloading of skeletal muscle causes atrophy and loss of contractile function. In part, this response is believed to be mediated by the transcription factor nuclear factor-kappa B (NF-kappaB). Both curcumin, a component of the spice turmeric, and N-acetylcysteine (NAC), an antioxidant, inhibit activation of NF-kappaB by inflammatory stimuli, albeit by different mechanisms. In the present study, we tested the hypothesis that dietary curcumin or NAC supplementation would inhibit unloading-induced NF-kappaB activity in skeletal muscle and thereby protect muscles against loss of mass and function caused by prolonged unloading. METHODS: We used hindlimb suspension to unload the hindlimb muscles of adult mice. Animals had free access to drinking water or drinking water supplemented with 1% NAC and to standard laboratory diet or diet supplemented with 1% curcumin. For 11 days, half the animals in each dietary group were suspended by the tail (unloaded) and half were allowed to ambulate freely. RESULTS: Unloading caused a 51-53% loss of soleus muscle weight and cross-sectional area relative to freely-ambulating controls. Unloading also decreased total force and force per cross-sectional area developed by soleus. Curcumin supplementation decreased NF-kappaB activity measured in peripheral tissues of ambulatory mice by gel shift analysis. In unloaded animals, curcumin supplementation did not inhibit NF-kappaB activity or blunt the loss of muscle mass in soleus. In contrast, NAC prevented the increase in NF-kappaB activity induced by unloading but did not prevent losses of muscle mass or function. CONCLUSION: In conclusion, neither dietary curcumin nor dietary NAC prevents unloading-induced skeletal muscle dysfunction and atrophy, although dietary NAC does prevent unloading induced NF-kappaB activation

    Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding

    Get PDF
    The Ebola virus (EBOV) envelope glycoprotein (GP) is a membrane fusion machine required for virus entry into cells. Following endocytosis of EBOV, the GP1 domain is cleaved by cellular cathepsins in acidic endosomes, removing the glycan cap and exposing a binding site for the Niemann-Pick C1 (NPC1) receptor. NPC1 binding to cleaved GP1 is required for entry. How this interaction translates to GP2 domain-mediated fusion of viral and endosomal membranes is not known. Here, using a bulk fluorescence dequenching assay and single-molecule Forster resonance energy transfer (smFRET)-imaging, we found that acidic pH, Ca2+, and NPC1 binding synergistically induce conformational changes in GP2 and permit virus-liposome lipid mixing. Acidic pH and Ca2+ shifted the GP2 conformational equilibrium in favor of an intermediate state primed for NPC1 binding. Glycan cap cleavage on GP1 enabled GP2 to transition from a reversible intermediate to an irreversible conformation, suggestive of the postfusion 6-helix bundle; NPC1 binding further promoted transition to the irreversible conformation. Thus, the glycan cap of GP1 may allosterically protect against inactivation of EBOV by premature triggering of GP2

    1989: Abilene Christian College Bible Lectures - Full Text

    Get PDF
    CHRIST AND CULTURE: The Problem of Secularism Being the Abilene Christian University Annual Bible Lectures 1989 Published by ACU PRESS 1634 Campus Court Abilene, Texas 7960

    Allergen-specific immunotherapy

    Get PDF
    Allergen-specific immunotherapy is a potentially disease-modifying therapy that is effective for the treatment of allergic rhinitis/conjunctivitis, allergic asthma and stinging insect hypersensitivity. However, despite its proven efficacy in these conditions, it is frequently underutilized in Canada. The decision to proceed with allergen-specific immunotherapy should be made on a case-by-case basis, taking into account individual patient factors such as the degree to which symptoms can be reduced by avoidance measures and pharmacological therapy, the amount and type of medication required to control symptoms, the adverse effects of pharmacological treatment, and patient preferences. Since this form of therapy carries the risk of anaphylactic reactions, it should only be prescribed by physicians who are adequately trained in the treatment of allergy. Furthermore, injections must be given under medical supervision in clinics that are equipped to manage anaphylaxis. In this article, the authors review the indications and contraindications, patient selection criteria, and the administration, safety and efficacy of allergen-specific immunotherapy

    Dislocation interactions during low-temperature plasticity of olivine and their impact on the evolution of lithospheric strength

    Get PDF
    The strength of the lithosphere is typically modelled based on constitutive equations for steady-state flow. However, strain hardening may cause significant evolution of strength in the colder load-bearing portion of the lithosphere. Recent rheological data from low-temperature deformation experiments on olivine suggest that strain hardening occurs due to the presence of temperature-independent back stresses generated by long-range elastic interactions among dislocations. These interpretations provided the basis for a flow law that incorporates hardening by the development of back stress. Here, we test this dislocation-interaction hypothesis by examining the microstructures of olivine samples deformed plastically at room temperature either in a deformation-DIA apparatus at differential stresses of ≀4.3GPa or in a nanoindenter at applied contact stresses of ≄10.2GPa. High-angular resolution electron backscatter diffraction maps reveal the presence of geometrically necessary dislocations with densities commonly above 1014m−2 and intragranular heterogeneities in residual stress on the order of 1 GPa in both sets of samples. Scanning transmission electron micrographs reveal straight dislocations aligned in slip bands and interacting with dislocations of other types that act as obstacles. The resulting accumulations of dislocations in their slip planes, and associated stress heterogeneities, are consistent with strain hardening resulting from long-range back-stresses acting among dislocations and thereby support the form of the flow law for low-temperature plasticity. Based on these observations, we predict that back stresses among dislocations will impart significant mechanical anisotropy to deformed lithosphere by enhancing or reducing the effective stress. Therefore, strain history, with associated microstructural and micromechanical evolution, is an important consideration for models of lithospheric strength. The microstructural observations also provide new criteria for identifying the operation of back-stress induced strain hardening in natural samples and therefore provide a means to test the applicability of the flow law for low-temperature plasticity.This research was supported by Natural Environment Research Council grants NE/M000966/1 to LNH, AJW, and DW and 1710DG008/JC4 to LNH and AJW; European Plate Observing System Transnational Access grant EPOS-TNA-MSL 2018-022 to LNH; Advanced Photon Source General User Proposal 55176 to LNH, DLG, and WBD; and National Science Foundation Awards EAR-1361319 to WBD, EAR-1625032 to JMW, and EAR-1806791 to KMK

    The adaptive significance of cultural behavior: Comments and reply

    Full text link
    Fundamentally, theoretically, there is only one process underlying genetic and cultural evolution: natural selection. Organism fitness-enhancement (“adaptive significance”) is one of its practical mechanisms; group formation and maintenance is another, often but not always through fitness-enhancement; and need-fulfillment is still another. If Durham can accept that formulation, and switch from “organism-thinking” to “instruction-thinking” (Cloak, 1975: 178), he will free himself from two handicaps: First, he can forget his worries about “reductionism” and “determinism” (1976a: 100, 101). Under this general theory of natural selection, cultural evolution is biological evolution, continued by “other” (nongenetic) means. Second, he will spare himself the appearance of anthropomorphism, mentalism, and wishy-washiness attendant on his discussion of kinds of “significance,” other than adaptive “significance,” of cultural behaviors (1976a: 102–106, 115).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44494/1/10745_2005_Article_BF01880258.pd
    • 

    corecore