46 research outputs found
Circulation at the South-West Indian Ridge in a high-resolution global ocean model
Includes bibliographical references (leaves 76-86)This study explores the use of the 1/4° and the 1/12° Ocean Circulation and Climate Advanced Modelling (OCCAM) project. The model's representation of the dynamic nature of this region is assessed. On average 2 - 3 intense and well-defined eddies are generated per year within the model; having mean longevities of 4.89 ± 2.20 months with average advection speeds of 5.51 ± 1.57 km day¯
Contribution of increased Agulhas leakage to tropical Atlantic warming
The upper tropical Atlantic Ocean has markedly warmed since the 1960s. It has been shown that this warming was not due to local heat fluxes, and that the trade winds that drive the coastal and equatorial upwelling have intensified rather than weakened. Remote forcing might thus have played an important role. Here model experiments are used to investigate the contribution from an increased inflow of warm Indian Ocean water through Agulhas leakage. A high-resolution hindcast experiment with interannually varying forcing for the time period 1948 to 2007, in which Agulhas leakage increases by about 45% from the 1960s to the early 2000s, reproduces the observed warming trend. To tease out the role of Agulhas leakage, a sensitivity experiment designed to only increase Agulhas leakage is used. Compared to a control simulation it shows a pronounced warming in the upper tropical Atlantic Ocean. A Lagrangian trajectory analysis confirms that a significant portion of Agulhas leakage water reaches the upper 300m of the tropical Atlantic Ocean within two decades, and that the tropical Atlantic warming in the sensitivity experiment is mainly due to water of Agulhas origin. Therefore, it is suggested that the increased trade winds since the 1960s favor upwelling of warmer subsurface waters, which in parts originate from the Agulhas, leading to higher SSTs in the tropic
Paleo Agulhas rings enter the subtropical gyre during the penultimate deglaciation
A maximum in the strength of Agulhas leakage has been registered at the interface between the Indian and South Atlantic oceans during glacial Termination II (T-II). This presumably transported the salt and heat necessary for maintaining the Atlantic circulation at rates similar to the present day. However, it was never shown whether these waters were effectively incorporated into the South Atlantic gyre, or whether they retroflected into the Indian and/or Southern oceans. To resolve this question, we investigate the presence of paleo Agulhas rings from a sediment core on the central Walvis Ridge, almost 1800 km farther into the Atlantic Basin than previously studied. Analysis of a 60 yr data set from the global-nested INALT01 model allows us to relate density perturbations at the depth of the thermocline to the passage of individual rings over the core site. Using this relation from the numerical model as the basis for a proxy, we generate a time series of variability of individual Globorotalia truncatulinoides delta O-18. We reveal high levels of pycnocline depth variability at the site, suggesting enhanced numbers of Agulhas rings moving into the South Atlantic Gyre around T-II. Our record closely follows the published quantifications of Agulhas leakage from the east of the Cape Basin, and thus shows that Indian Ocean waters entered the South Atlantic circulation. This provides crucial support for the view of a prominent role of the Agulhas leakage in the shift from a glacial to an interglacial mode of the Atlantic circulation
Advective timescales and pathways of Agulhas leakage
Current research indicates an increase in Agulhas leakage for the past and coming decades. This change potentially alters the strength of the Atlantic meridional overturning circulation, in particular, through advection of positive density anomalies into the North Atlantic. To explore the fate of Agulhas leakage, results from a Lagrangian analysis were evaluated, with virtual floats advected within an eddy-permitting ocean model (ORCA025). A considerable fraction of Agulhas leakage reached the subtropical North Atlantic: of a mean Agulhas leakage transport of 15.3 Sv entering the South Atlantic, 9.7, 7.7, and 6.1 Sv crossed sections at 6 degrees S, 6 degrees N, and 26 degrees N, respectively. The most probable transit time of leakage to reach the respective latitudes is one to two decades. We suggest that changes in Agulhas leakage could manifest in the Gulf Stream regime most probably within two decades. These results were supported by an eddy-resolving implementation of the ocean model (INALT01
Sentinels to climate change. The need for monitoring at South Africa’s Subantarctic laboratory
The International Society for Burns Injuries (ISBI) has published guidelines for the management of multiple or mass burns casualties, and recommends that 'each country has or should have a disaster planning system that addresses its own particular needs.' The need for a national burns disaster plan integrated with national and provincial disaster planning was discussed at the South African Burns Society Congress in 2009, but there was no real involvement in the disaster planning prior to the 2010 World Cup; the country would have been poorly prepared had there been a burns disaster during the event. This article identifies some of the lessons learnt and strategies derived from major burns disasters and burns disaster planning from other regions. Members of the South African Burns Society are undertaking an audit of burns care in South Africa to investigate the feasibility of a national burns disaster plan. This audit (which is still under way) also aims to identify weaknesses of burns care in South Africa and implement improvements where necessary
Multidecadal Wind Variability Drives Temperature Shifts on the Agulhas Bank
Key Points:
• A regional ocean model is used
to examine multidecadal shelf
temperature changes on the Agulhas
Bank
• There are distinct shelf temperature
regime changes in 1966 and 1996
• These regime shifts are caused by
changes in coastal upwelling linked
to large-scale wind variability
The Agulhas Bank is an important area for the spawning of small pelagic fish and other species. Here, within a NEMO ocean model, we investigate changes in temperature over the Bank on multidecadal time scales. In agreement with previous observational studies, a shift to colder temperatures is found in 1997. The model also simulates an earlier shift from colder to warmer temperatures in 1966. These shifts are coastally confined and shown, using a climatologically forced model run as a control, to be driven by a north‐south migration in the large‐scale wind belts, rather than by changes in downward heat fluxes or changes in the Agulhas Current itself. The zonal wind changes on the Agulhas Bank show a significant relationship with the Southern Annular Mode, showing some promise for future predictability of cold and warm regimes on the Agulhas Bank. Thus, while the Agulhas Current has been shown in previous work to have a large impact on intra‐annual and interannual temperature variability, this work shows that multidecadal variability in temperature on the shelf is likely to be wind forced
Simulations of anthropogenic bromoform indicate high emissions at the coast of East Asia
Bromoform is the major by-product from chlorination of cooling water in coastal power plants. The number of power plants in East and Southeast Asian economies has increased rapidly, exceeding mean global growth. Bottom-up estimates of bromoform emissions based on few measurements appear to under-represent the industrial sources of bromoform from East Asia. Using oceanic Lagrangian analyses, we assess the amount of bromoform produced from power plant cooling-water treatment in East and Southeast Asia. The spread of bromoform is simulated as passive particles that are advected using the three-dimensional velocity fields over the years 2005/2006 from the high-resolution NEMO-ORCA0083 ocean general circulation model. Simulations are run for three scenarios with varying initial bromoform concentrations based on the range of bromoform measurements in cooling-water discharge. Comparing the modelled anthropogenic bromoform to in situ observations in the surface ocean and atmosphere, the two lower scenarios show the best agreement, suggesting initial bromoform concentrations in cooling water to be around 20–60 µg L−1. Based on these two scenarios, the model produces elevated bromoform in coastal waters of East Asia with average concentrations of 23 and 68 pmol L−1 and maximum values in the Yellow Sea, Sea of Japan and East China Sea. The industrially produced bromoform is quickly emitted into the atmosphere with average air–sea flux of 3.1 and 9.1 nmolm−2h−1
, respectively.
Atmospheric abundances of anthropogenic bromoform are derived from simulations with the Lagrangian particle dispersion model FLEXPART based on ERA-Interim wind fields in 2016. In the marine boundary layer of East Asia, the FLEXPART simulations show mean anthropogenic bromoform mixing ratios of 0.4–1.3 ppt, which are 2–6 times larger compared to the climatological bromoform estimate. During boreal winter, the simulations show that some part of the anthropogenic bromoform is transported by the northeasterly winter monsoon towards the tropical regions, whereas during boreal summer anthropogenic bromoform is confined to the Northern Hemisphere subtropics. Convective events in the tropics entrain an additional 0.04–0.05 ppt of anthropogenic bromoform into the stratosphere, averaged over tropical Southeast Asia. In our simulations, only about 10 % of anthropogenic bromoform is outgassed from power plants located in the tropics south of 20∘ N, so that only a small fraction of the anthropogenic bromoform reaches the stratosphere.
We conclude that bromoform from cooling-water treatment in East Asia is a significant source of atmospheric bromine and might be responsible for annual emissions of 100–300 Mmol of Br in this region. These anthropogenic bromoform sources from industrial water treatment might be a missing factor in global flux estimates of organic bromine. While the current emissions of industrial bromoform provide a significant contribution to regional tropospheric budgets, they provide only a minor contribution to the stratospheric bromine budget of 0.24–0.30 ppt of Br
Seasonal variability of the Atlantic Meridional Overturning Circulation at 11° S inferred from bottom pressure measurements
Bottom pressure observations on both sides of the Atlantic basin, combined with satellite measurements of sea level anomalies and wind stress data, are utilized to estimate variations of the Atlantic Meridional Overturning Circulation (AMOC) at 11∘ S. Over the period 2013–2018, the AMOC and its components are dominated by seasonal variability, with peak-to-peak amplitudes of 12 Sv for the upper-ocean geostrophic transport, 7 Sv for the Ekman and 14 Sv for the AMOC transport. The characteristics of the observed seasonal cycles of the AMOC and its components are compared to results from an ocean general circulation model, which is known to reproduce the variability of the Western Boundary Current on longer timescales. The observed seasonal variability of zonally integrated geostrophic velocity in the upper 300 m is controlled by pressure variations at the eastern boundary, while at 500 m depth contributions from the western and eastern boundaries are similar. The model tends to underestimate the seasonal pressure variability at 300 and 500 m depth, especially at the western boundary, which translates into the estimate of the upper-ocean geostrophic transport. In the model, seasonal AMOC variability at 11∘ S is governed, besides the Ekman transport, by the geostrophic transport variability in the eastern basin. The geostrophic contribution of the western basin to the seasonal cycle of the AMOC is instead comparably weak, as transport variability in the western basin interior related to local wind curl forcing is mainly compensated by the Western Boundary Current. Our analyses indicate that while some of the uncertainties of our estimates result from the technical aspects of the observational strategy or processes not being properly represented in the model, uncertainties in the wind forcing are particularly relevant for the resulting uncertainties of AMOC estimates at 11∘ S
Designing variable ocean model resolution based on the observed ocean variability
If unstructured meshes are refined to locally represent eddy dynamics in ocean circulation models, a practical question arises on how to vary the resolution and where to deploy the refinement. We propose to use the observed sea surface height variability as the refinement criterion. We explore the utility of this method (i) in a suite of idealized experiments simulating a wind-driven double gyre flow in a stratified circular basin and (ii) in simulations of global ocean circulation performed with FESOM. Two practical approaches of mesh refinement are compared. In the first approach the uniform refinement is confined within the areas where the observed variability exceeds a given threshold. In the second one the refinement varies linearly following the observed variability. The resolution is fixed in time. For the double gyre case it is shown that the variability obtained in a high-resolution reference run can be well captured on variable-resolution meshes if they are refined where the variability is high and additionally upstream the jet separation point. The second approach of mesh refinement proves to be more beneficial in terms of improvement downstream the midlatitude jet. Similarly, in global ocean simulations the mesh refinement based on the observed variability helps the model to simulate high variability at correct locations. The refinement also leads to a reduced bias in the upper-ocean temperatur
Interannual to decadal changes in the western boundary circulation in the Atlantic at 11°S
The western boundary current system off Brazil is a key region for diagnosing variations of the Atlantic meridional overturning circulation (AMOC) and the southern subtropical cell. In July 2013 a mooring array was installed off the coast at 11°S similar to an array installed between 2000 and 2004 at the same location. Here we present results from two research cruises and the first 10.5 months of moored observations in comparison to the observations a decade ago. Average transports of the North Brazil Undercurrent and the Deep Western Boundary Current (DWBC) have not changed between the observational periods. DWBC eddies that are predicted to disappear with a weakening AMOC are still present. Upper layer changes in salinity and oxygen within the last decade are consistent with an increased Agulhas leakage, while at depths water mass changes are likely related to changes in the North Atlantic as well as tropical circulation changes