1,327 research outputs found

    Successive Coefficients of Univalent Functions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135332/1/jlms0448.pd

    An Arclength Problem for Close‐to‐Convex Functions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135569/1/jlms0181.pd

    Interface growth in two dimensions: A Loewner-equation approach

    Full text link
    The problem of Laplacian growth in two dimensions is considered within the Loewner-equation framework. Initially the problem of fingered growth recently discussed by Gubiec and Szymczak [T. Gubiec and P. Szymczak, Phys. Rev. E 77, 041602 (2008)] is revisited and a new exact solution for a three-finger configuration is reported. Then a general class of growth models for an interface growing in the upper-half plane is introduced and the corresponding Loewner equation for the problem is derived. Several examples are given including interfaces with one or more tips as well as multiple growing interfaces. A generalization of our interface growth model in terms of ``Loewner domains,'' where the growth rule is specified by a time evolving measure, is briefly discussed.Comment: To appear in Physical Review

    Predictability of band-limited, high-frequency, and mixed processes in the presence of ideal low-pass filters

    Full text link
    Pathwise predictability of continuous time processes is studied in deterministic setting. We discuss uniform prediction in some weak sense with respect to certain classes of inputs. More precisely, we study possibility of approximation of convolution integrals over future time by integrals over past time. We found that all band-limited processes are predictable in this sense, as well as high-frequency processes with zero energy at low frequencies. It follows that a process of mixed type still can be predicted if an ideal low-pass filter exists for this process.Comment: 10 page

    Injectivity of sections of convex harmonic mappings and convolution theorems

    Get PDF
    In the article the authors consider the class H0{\mathcal H}_0 of sense-preserving harmonic functions f=h+gf=h+\overline{g} defined in the unit disk z<1|z|<1 and normalized so that h(0)=0=h(0)1h(0)=0=h'(0)-1 and g(0)=0=g(0)g(0)=0=g'(0), where hh and gg are analytic in the unit disk. In the first part of the article we present two classes PH0(α)\mathcal{P}_H^0(\alpha) and GH0(β)\mathcal{G}_H^0(\beta) of functions from H0{\mathcal H}_0 and show that if fPH0(α)f\in \mathcal{P}_H^0(\alpha) and FGH0(β)F\in\mathcal{G}_H^0(\beta), then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters α\alpha and β\beta are satisfied. In the second part we study the harmonic sections (partial sums) sn,n(f)(z)=sn(h)(z)+sn(g)(z), s_{n, n}(f)(z)=s_n(h)(z)+\overline{s_n(g)(z)}, where f=h+gH0f=h+\overline{g}\in {\mathcal H}_0, sn(h)s_n(h) and sn(g)s_n(g) denote the nn-th partial sums of hh and gg, respectively. We prove, among others, that if f=h+gH0f=h+\overline{g}\in{\mathcal H}_0 is a univalent harmonic convex mapping, then sn,n(f)s_{n, n}(f) is univalent and close-to-convex in the disk z<1/4|z|< 1/4 for n2n\geq 2, and sn,n(f)s_{n, n}(f) is also convex in the disk z<1/4|z|< 1/4 for n2n\geq2 and n3n\neq 3. Moreover, we show that the section s3,3(f)s_{3,3}(f) of fCH0f\in {\mathcal C}_H^0 is not convex in the disk z<1/4|z|<1/4 but is shown to be convex in a smaller disk.Comment: 16 pages, 3 figures; To appear in Czechoslovak Mathematical Journa

    Hydrodynamic object recognition using pressure sensing

    No full text
    Hydrodynamic sensing is instrumental to fish and some amphibians. It also represents, for underwater vehicles, an alternative way of sensing the fluid environment when visual and acoustic sensing are limited. To assess the effectiveness of hydrodynamic sensing and gain insight into its capabilities and limitations, we investigated the forward and inverse problem of detection and identification, using the hydrodynamic pressure in the neighbourhood, of a stationary obstacle described using a general shape representation. Based on conformal mapping and a general normalization procedure, our obstacle representation accounts for all specific features of progressive perceptual hydrodynamic imaging reported experimentally. Size, location and shape are encoded separately. The shape representation rests upon an asymptotic series which embodies the progressive character of hydrodynamic imaging through pressure sensing. A dynamic filtering method is used to invert noisy nonlinear pressure signals for the shape parameters. The results highlight the dependence of the sensitivity of hydrodynamic sensing not only on the relative distance to the disturbance but also its bearing

    Self-adjoint Lyapunov variables, temporal ordering and irreversible representations of Schroedinger evolution

    Full text link
    In non relativistic quantum mechanics time enters as a parameter in the Schroedinger equation. However, there are various situations where the need arises to view time as a dynamical variable. In this paper we consider the dynamical role of time through the construction of a Lyapunov variable - i.e., a self-adjoint quantum observable whose expectation value varies monotonically as time increases. It is shown, in a constructive way, that a certain class of models admit a Lyapunov variable and that the existence of a Lyapunov variable implies the existence of a transformation mapping the original quantum mechanical problem to an equivalent irreversible representation. In addition, it is proved that in the irreversible representation there exists a natural time ordering observable splitting the Hilbert space at each t>0 into past and future subspaces.Comment: Accepted for publication in JMP. Supercedes arXiv:0710.3604. Discussion expanded to include the case of Hamiltonians with an infinitely degenerate spectru

    Approximate resonance states in the semigroup decomposition of resonance evolution

    Full text link
    The semigroup decomposition formalism makes use of the functional model for C.0C_{.0} class contractive semigroups for the description of the time evolution of resonances. For a given scattering problem the formalism allows for the association of a definite Hilbert space state with a scattering resonance. This state defines a decomposition of matrix elements of the evolution into a term evolving according to a semigroup law and a background term. We discuss the case of multiple resonances and give a bound on the size of the background term. As an example we treat a simple problem of scattering from a square barrier potential on the half-line.Comment: LaTex 22 pages 3 figure

    Fingered growth in channel geometry: A Loewner equation approach

    Full text link
    A simple model of Laplacian growth is considered, in which the growth takes place only at the tips of long, thin fingers. In a recent paper, Carleson and Makarov used the deterministic Loewner equation to describe the evolution of such a system. We extend their approach to a channel geometry and show that the presence of the side walls has a significant influence on the evolution of the fingers and the dynamics of the screening process, in which longer fingers suppress the growth of the shorter ones

    Growth of fat slits and dispersionless KP hierarchy

    Full text link
    A "fat slit" is a compact domain in the upper half plane bounded by a curve with endpoints on the real axis and a segment of the real axis between them. We consider conformal maps of the upper half plane to the exterior of a fat slit parameterized by harmonic moments of the latter and show that they obey an infinite set of Lax equations for the dispersionless KP hierarchy. Deformation of a fat slit under changing a particular harmonic moment can be treated as a growth process similar to the Laplacian growth of domains in the whole plane. This construction extends the well known link between solutions to the dispersionless KP hierarchy and conformal maps of slit domains in the upper half plane and provides a new, large family of solutions.Comment: 26 pages, 6 figures, typos correcte
    corecore