134 research outputs found

    ADAM: a general method for using various data types in asteroid reconstruction

    Get PDF
    We introduce ADAM, the All-Data Asteroid Modelling algorithm. ADAM is simple and universal since it handles all disk-resolved data types (adaptive optics or other images, interferometry, and range-Doppler radar data) in a uniform manner via the 2D Fourier transform, enabling fast convergence in model optimization. The resolved data can be combined with disk-integrated data (photometry). In the reconstruction process, the difference between each data type is only a few code lines defining the particular generalized projection from 3D onto a 2D image plane. Occultation timings can be included as sparse silhouettes, and thermal infrared data are efficiently handled with an approximate algorithm that is sufficient in practice due to the dominance of the high-contrast (boundary) pixels over the low-contrast (interior) ones. This is of particular importance to the raw ALMA data that can be directly handled by ADAM without having to construct the standard image. We study the reliability of the inversion by using the independent shape supports of function series and control-point surfaces. When other data are lacking, one can carry out fast nonconvex lightcurve-only inversion, but any shape models resulting from it should only be taken as illustrative global-scale ones.Comment: 11 pages, submitted to A&

    Asteroid models from the Lowell Photometric Database

    Full text link
    We use the lightcurve inversion method to derive new shape models and spin states of asteroids from the sparse-in-time photometry compiled in the Lowell Photometric Database. To speed up the time-consuming process of scanning the period parameter space through the use of convex shape models, we use the distributed computing project Asteroids@home, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. This way, the period-search interval is divided into hundreds of smaller intervals. These intervals are scanned separately by different volunteers and then joined together. We also use an alternative, faster, approach when searching the best-fit period by using a model of triaxial ellipsoid. By this, we can independently confirm periods found with convex models and also find rotation periods for some of those asteroids for which the convex-model approach gives too many solutions. From the analysis of Lowell photometric data of the first 100,000 numbered asteroids, we derived 328 new models. This almost doubles the number of available models. We tested the reliability of our results by comparing models that were derived from purely Lowell data with those based on dense lightcurves, and we found that the rate of false-positive solutions is very low. We also present updated plots of the distribution of spin obliquities and pole ecliptic longitudes that confirm previous findings about a non-uniform distribution of spin axes. However, the models reconstructed from noisy sparse data are heavily biased towards more elongated bodies with high lightcurve amplitudes

    Asteroid Models from Multiple Data Sources

    Full text link
    In the past decade, hundreds of asteroid shape models have been derived using the lightcurve inversion method. At the same time, a new framework of 3-D shape modeling based on the combined analysis of widely different data sources such as optical lightcurves, disk-resolved images, stellar occultation timings, mid-infrared thermal radiometry, optical interferometry, and radar delay-Doppler data, has been developed. This multi-data approach allows the determination of most of the physical and surface properties of asteroids in a single, coherent inversion, with spectacular results. We review the main results of asteroid lightcurve inversion and also recent advances in multi-data modeling. We show that models based on remote sensing data were confirmed by spacecraft encounters with asteroids, and we discuss how the multiplication of highly detailed 3-D models will help to refine our general knowledge of the asteroid population. The physical and surface properties of asteroids, i.e., their spin, 3-D shape, density, thermal inertia, surface roughness, are among the least known of all asteroid properties. Apart for the albedo and diameter, we have access to the whole picture for only a few hundreds of asteroids. These quantities are nevertheless very important to understand as they affect the non-gravitational Yarkovsky effect responsible for meteorite delivery to Earth, or the bulk composition and internal structure of asteroids.Comment: chapter that will appear in a Space Science Series book Asteroids I

    The Thousand Asteroid Light Curve Survey

    Full text link
    We present the results of our Thousand Asteroid Light Curve Survey (TALCS) conducted with the Canada-France-Hawaii Telescope in September 2006. Our untargeted survey detected 828 Main Belt asteroids to a limiting magnitude of g'~22.5 corresponding to a diameter range of 0.4 km <= D <= 10 km. Of these, 278 objects had photometry of sufficient quality to perform rotation period fits. We debiased the observations and light curve fitting process to determine the true distribution of rotation periods and light curve amplitudes of Main Belt asteroids. We confirm a previously reported excess in the fraction of fast rotators but find a much larger excess of slow rotating asteroids (~15% of our sample). A few percent of objects in the TALCS size range have large light curve amplitudes of ~1 mag. Fits to the debiased distribution of light curve amplitudes indicate that the distribution of triaxial ellipsoid asteroid shapes is proportional to the square of the axis-ratio, (b/a)^2, and may be bi-modal. Finally, we find six objects with rotation periods that may be less than 2 hours with diameters between 400 m and 1.5 km, well above the break-up limit for a gravitationally-bound aggregate. Our debiased data indicate that this population represents <4% of the Main Belt in the 1-10 km size range.Comment: Accepted to Icarus. Full tables to appear there in electronic format, or contact autho

    Reconstruction of asteroid spin states from Gaia DR3 photometry

    Full text link
    Gaia Data Release 3 contains accurate photometric observations of more than 150,000 asteroids covering a time interval of 34 months. With a total of about 3,000,000 measurements, a typical number of observations per asteroid ranges from a few to several tens. We aimed to reconstruct the spin states and shapes of asteroids from this dataset. We computed the viewing and illumination geometry for each individual observation and used the light curve inversion method to find the best-fit asteroid model, which was parameterized by the sidereal rotation period, the spin axis direction, and a low-resolution convex shape. To find the best-fit model, we ran the inversion for tens of thousands of trial periods on interval 2-10,000 h, with tens of initial pole directions. To find the correct rotation period, we also used a triaxial ellipsoid model for the shape approximation. In most cases the number of data points was insufficient to uniquely determine the rotation period. However, for about 8600 asteroids we were able to determine the spin state uniquely together with a low-resolution convex shape model. This large sample of new asteroid models enables us to study the spin distribution in the asteroid population. The distribution of spins confirms previous findings that (i) small asteroids have poles clustered toward ecliptic poles, likely because of the YORP-induced spin evolution, (ii) asteroid migration due to the Yarkovsky effect depends on the spin orientation, and (iii) members of asteroid families have the sense of rotation correlated with their proper semimajor axis: over the age of the family, orbits of prograde rotators evolved, due to the Yarkovsky effect, to larger semimajor axes, while those of retrograde rotators drifted in the opposite direction
    • …
    corecore