10,200 research outputs found

    Test fixture insures high degree of accuracy in flexure tests

    Get PDF
    Modified die set improves accuracy in load application, minimizes problems of parallelism, and eliminates testing errors normally encountered during flexure tests. Test results are given for a comparison test of the old and new fixtures

    Compaction of anisotropic granular materials : experiments and simulations

    Full text link
    We present both experimental and numerical investigations of compaction in granular materials composed of rods. As a function of the aspect ratio of the particles, we have observed large variations of the asymptotic packing volume fraction in vertical tubes. The relevant parameter is the ratio between the rod length \ell and the tube diameter DD. Even the compaction dynamics remains unchanged for various particle lengths, a 3d/2d phase transition for grain orientations is observed for /D=1\ell/D = 1. A toy model for the compaction of needles on a lattice is also proposed. This toy model gives a complementary view of our experimental results and leads to behaviors similar to experimental ones.Comment: 5 pages, 10 figure

    On the existence of bounded solutions for a nonlinear elliptic system

    Get PDF
    This work deals with the system (Δ)mu=a(x)vp(-\Delta)^m u= a(x) v^p, (Δ)mv=b(x)uq(-\Delta)^m v=b(x) u^q with Dirichlet boundary condition in a domain \Omega\subset\RR^n, where Ω\Omega is a ball if n3n\ge 3 or a smooth perturbation of a ball when n=2n=2. We prove that, under appropriate conditions on the parameters (a,b,p,q,m,na,b,p,q,m,n), any non-negative solution (u,v)(u,v) of the system is bounded by a constant independent of (u,v)(u,v). Moreover, we prove that the conditions are sharp in the sense that, up to some border case, the relation on the parameters are also necessary. The case m=1m=1 was considered by Souplet in \cite{PS}. Our paper generalize to m1m\ge 1 the results of that paper

    Experimental study of the compaction dynamics for 2D anisotropic granular materials

    Full text link
    We present an experimental study of the compaction dynamics for two-dimensional anisotropic granular systems. Compaction dynamics is measured at three different scales : (i) the macroscopic scale through the packing fraction ρ\rho, (ii) the mesoscopic scale through both fractions of aligned grains ϕa\phi_{a} and ideally ordered grains ϕio\phi_{io}, and (iii) the microscopic scale through both rotational and translational grain mobilities μr,t\mu_{r,t}. The effect of the grain rotations on the compaction dynamics has been measured. At the macroscopic scale, we have observed a discontinuity in the late stages of the compaction curve. At the mesoscopic scale, we have observed the formation and the growth of domains made of aligned grains. From a microscopic point of view, measurements reveal that the beginning of the compaction process is essentially related to translational motion of the grains. The grains rotations drive mainly the process during the latest stages of compaction.Comment: 8pages, 11 figure

    Efficient vasculature investment in tissues can be determined without global information

    Get PDF
    Cells are the fundamental building blocks of organs and tissues. Information and mass flow through cellular contacts in these structures is vital for the orchestration of organ function. Constraints imposed by packing and cell immobility limit intercellular communication, particularly as organs and organisms scale up to greater sizes. In order to transcend transport limitations, delivery systems including vascular and respiratory systems evolved to facilitate the movement of matter and information. The construction of these delivery systems has an associated cost, as vascular elements do not perform the metabolic functions of the organs they are part of. This study investigates a fundamental trade-off in vascularization in multicellular tissues: the reduction of path lengths for communication versus the cost associated with producing vasculature. Biologically realistic generative models, using multicellular templates of different dimensionalities, revealed a limited advantage to the vascularization of two-dimensional tissues. Strikingly, scale-free improvements in transport efficiency can be achieved even in the absence of global knowledge of tissue organization. A point of diminishing returns in the investment of additional vascular tissue to the increased reduction of path length in 2.5- and three-dimensional tissues was identified. Applying this theory to experimentally determined biological tissue structures, we show the possibility of a co-dependency between the method used to limit path length and the organization of cells it acts upon. These results provide insight as to why tissues are or are not vascularized in nature, the robustness of developmental generative mechanisms and the extent to which vasculature is advantageous in the support of organ function

    Radial Solutions for Hamiltonian Elliptic Systems with Weights

    Full text link
    We prove the existence of infinitely many radial solutions for elliptic systems in Rn with power weights. A key tool for the proof will be a weighted imbedding theorem for fractional-order Sobolev spaces, that could be of independent interest.Comment: 13 page

    In Vitro Embryo Production in Water Buffalo

    Get PDF
    In vitro embryo production (IVEP) is a promising tool with many applications in producing calves from genetically superior animals desired for propagation and in the conservation and revival of endangered species. The techniques of IVEP were adopted from cattle and refined to suit the water buffalo requirements. From the collection of ovaries from a local abattoir and the collection of oocytes by ovum pick up from live animals, gamete storage, collection techniques, handling of ovaries and oocytes to keep the viability and developmental competence, selection of oocytes to the type of culture media and in vitro culture condition, and treatment of the sperm cells for in vitro fertilization are all-important components of the process that requires careful and precise action to ensure success. Trials on intracytoplasmic injection, the use of sex-sorted sperm cells as a tool for producing sex-predetermined embryos, and the somatic cell nuclear transfer are methods that can be used to produce embryos in vitro. This paper provides the important considerations involved in the production of healthy live calves out of in vitro-produced water buffalo embryos

    Anomalous resonant production of the fourth family up type quarks at the LHC

    Get PDF
    Considering the present limits on the masses of fourth family quarks from the Tevatron experiments, the fourth family quarks are expected to have mass larger than the top quark. Due to their expected large mass they could have different dynamics than the quarks of three families of the Standard Model. The resonant production of the fourth family up type quark t' has been studied via anomalous production subprocess gq_i-->t' (where q_i=u,c) at the LHC with the center of mass energy 10 TeV and 14 TeV. The signatures of such process are discussed within the SM decay modes. The sensitivity to anomalous coupling \kappa/\Lambda=0.1 TeV^(-1) can be reached at \sqrt{s}=10 TeV and L_int=100 pb^(-1).Comment: 14 pages, 13 figures, 7 table
    corecore