10 research outputs found

    Modelación matemática del tratamiento anaerobio de aguas residuales urbanas incluyendo las bacterias sulfatorreductoras. Aplicación a un biorreactor anaeroio de membranas

    Full text link
    Con el aumento de la población y de la demanda de bienes y servicios a escala global, se ha producido un deterioro en la calidad y disponibilidad del agua, poniendo de manifiesto la necesidad inminente de un cambio de mentalidad en la sociedad. Este cambio debe incluir, tanto la intensificación de las disposiciones legales que permitan prevenir la contaminación, como el desarrollo e implementación de tecnologías de depuración más eficaces, sostenibles y respetuosas con el ambiente. En la actualidad, en la mayoría de países desarrollados el tratamiento de aguas residuales urbanas está basado en los sistemas de fangos activados como tratamiento principal. Estos sistemas se caracterizan por presentar un elevado consumo energético y una alta generación de fango biológico, que debe ser sometido a algún tratamiento de estabilización previo a su reutilización o disposición final. Una alternativa a estas tecnologías son los sistemas basados en procesos anaerobios, cuya implementación supone mayor sostenibilidad, menor coste económico y energético, y menor impacto ambiental. Sin embargo, es necesario superar las limitaciones asociadas a las bajas velocidades de crecimiento de la biomasa anaerobia (en comparación con los microorganismos aerobios) y a la baja eficacia en la separación de la biomasa mediante procesos de sedimentación. La combinación del proceso anaerobio de degradación de la materia orgánica con un proceso de filtración con membranas, permite superar los inconvenientes mencionados, pudiéndose establecer tiempos de retención celular elevados sin necesidad de incrementar el volumen de reacción y obtener un efluente de alta calidad. Una de las ventajas de los sistemas anaerobios es la recuperación de parte de la energía contenida en la materia orgánica en forma de metano. Sin embargo, cuando hay presencia de sulfato en el medio se desarrollan bacterias sulfatorreductoras, las cuales compiten por los sustratos, reduciéndose la eficiencia en la conversión de materia orgánica a metano, y generando sulfuro de hidrógeno (sulfurogénesis), que inhibe los procesos biológicos y disminuye la calidad del biogás generado. Debido a la importancia que tiene el proceso de sulfurogénesis en los sistemas de tratamiento de aguas residuales, varios autores han propuesto modelos matemáticos que incluyen los procesos biológicos, físicos y químicos asociados a las bacterias sulfatorreductoras. Sin embargo, no existe un modelo global que permita simular en conjunto los procesos que tienen lugar tanto en la línea de agua como en la de fango, y donde esté incluido este proceso. También es destacable la ausencia de una metodología sistemática para la calibración de los parámetros de los modelos anaerobios de tratamiento de aguas residuales. El objetivo principal de la presente tesis doctoral es la modelación matemática del tratamiento anaerobio de aguas residuales urbanas con elevado contenido de sulfato. Con este fin, se ha desarrollado un modelo matemático capaz de describir el proceso biológico de sulfurogénesis y se ha propuesto una metodología de calibración de los parámetros. El modelo desarrollado ha sido incorporado al modelo global Biological Nutrient Removal Model No. 2 (BNRM2). Tanto el modelo como la metodología de calibración han sido validados mediante simulación con el programa DESASS, comparando los resultados predichos por el modelo con los valores experimentales obtenidos en un biorreactor anaerobio de membranas a escala demostraciónDurán Pinzón, F. (2013). Modelación matemática del tratamiento anaerobio de aguas residuales urbanas incluyendo las bacterias sulfatorreductoras. Aplicación a un biorreactor anaeroio de membranas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34778TESI

    Understanding the performance of an AnMBR treating urban wastewater and food waste via model simulation and characterization of the microbial population dynamics

    Full text link
    [EN] An anaerobic membrane bioreactor (AnMBR) pilot plant treating kitchen food waste (FW) jointly with urban wastewater was run for 536 days. Different operational conditions were tested varying the sludge retention time (SRT), the hydraulic retention time (HRT) and the penetration factor (PF) of food waste disposers. COD removal efficiency exceeded 90% in all tested conditions. The joint treatment resulted in an almost 3-fold increase in methane production (at 70 days of SRT, 24 h HRT and 80% PF) in comparison with the treatment of urban wastewater only. Mathematical model simulations and Illumina technology were used to obtain in-depth information of this outstanding process performance. Both the PF and SRT factors increased influent biodegradability. The experimental results were accurately reproduced via model simulations modifying only the influent biodegradability. The high SRT and the presence of ground FW in the influent resulted in higher hydrolytic activity. Not only did the Archaea population increase 3-fold but Levilinea genera was also significantly raised. Three new genera characterised by anaerobic fermentation of amino acids (Leptolinea, Aminomonas and Aminobacterium) were among the ten most abundant of the total sequences identified during the joint treatment, indicating an improvement in the hydrolysis step of anaerobic degradation. Influent biodegradability remained at high values when FW addition stopped.This research work has been financially supported by the Generalitat Valenciana (PROMETEO/2012/029 PROJECT), which is gratefully acknowledged.Durán Pinzón, F.; Zamorano -López, N.; Barat, R.; Ferrer, J.; Aguado García, D. (2018). Understanding the performance of an AnMBR treating urban wastewater and food waste via model simulation and characterization of the microbial population dynamics. Process Biochemistry. 67:139-146. https://doi.org/10.1016/j.procbio.2018.02.010S1391466

    Influence of total solids concentration on membrane permeability in a submerged hollow-fibre anaerobic membrane bioreactor

    Full text link
    The main aim of this work was to study the influence of the mixed liquor total solids (MLTS) concentration on membrane permeability (K 20) in a submerged anaerobic membrane bioreactor (SAnMBR) pilot plant, which is equipped with industrial hollow-fibre membranes and treats urban wastewater. This pilot plant was operated at 33°C and 70 days of SRT. Two different transmembrane fluxes (13.3 and 10 LMH) were tested with a gas sparging intensity of 0.23 Nm 3 m -2 h -1 (measured as Specific Gas Demand referred to membrane area). A linear dependence of K 20 on MLTS concentration was observed within a range of MLTS concentration from 13 to 32 g L -1 and J 20 of 10 LMH. K 20 was maintained at sustainable values (about 100 LMH bar -1) even at high MLTS concentrations (up to 20 g L -1). In addition, several short-tests were carried out when the membranes were operated at high MLTS concentrations in order to assess the effect of the physical cleaning strategies (relaxation and back-flush) on membrane performance. It was observed that, with the applied gas sparging intensity, the duration of the relaxation stage did not critically affect the membrane performance. On the other hand, the required back-flush frequency was considerably affected by the MLTS concentration. © IWA Publishing 2012.This research work has been supported by the Spanish Research Foundation (CICYT Projects CTM2008-06809-C02-01 and CTM2008-06809-C02-02, and MICINN FPI grant BES-2009-023712) and Generalitat Valenciana (Projects GVA-ACOMP2010/130 and GVA-ACOMP2011/182), which are gratefully acknowledged.Robles Martínez, Á.; Durán Pinzón, F.; Ruano García, MV.; Ribes Bertomeu, J.; Ferrer Polo, J. (2012). Influence of total solids concentration on membrane permeability in a submerged hollow-fibre anaerobic membrane bioreactor. Water Science and Technology. 66(2):377-384. doi:10.2166/wst.2012.196S37738466

    Microalgae population dynamics growth with AnMBR effluent: effect of light and phosphorous concentration

    Full text link
    [EN] The aim of this study was to evaluate the effect of light intensity and phosphorus concentration on biomass growth and nutrient removal in a microalgae culture and their effect on their competition. The photobioreactor was continuously fed with the effluent from an anaerobic membrane bioreactor pilot plant treating real wastewater. Four experimental periods were carried out at different light intensities (36 and 52 mu mol s(-1) m(-2)) and phosphorus concentrations (around 6 and 15 mgP L-1). Four green algae - Scenedesmus, Chlorella, Monoraphidium and Chlamydomonas-and cyanobacterium were detected and quantified along whole experimental period. Chlorella was the dominant species when light intensity was at the lower level tested, and was competitively displaced by a mixed culture of Scenedesmus and Monoraphidium when light was increased. When phosphorus concentration in the photobioreactor was raised up to 15 mgP L-1, a growth of cyanobacterium became the dominant species in the culture. The highest nutrient removal efficiency (around 58.4 +/- 15.8% and 96.1 +/- 16.5% of nitrogen and phosphorus, respectively) was achieved at 52 mu mol s(-1) m(-2) of light intensity and 6.02 mgP L-1 of phosphorus concentration, reaching about 674 +/- 86 mg L-1 of volatile suspended solids. The results obtained reveal how the light intensity supplied and the phosphorus concentration available are relevant operational factors that determine the microalgae species that is able to predominate in a culture. Moreover, changes in microalgae predominance can be induced by changes in the growth medium produced by the own predominant species.Financial support from Primeros Proyectos de la Universitat Politecnica de Valencia (UPV PAID-06-14) is gratefully acknowledged.Sanchis-Perucho, P.; Durán Pinzón, F.; Barat, R.; Paches Giner, MAV.; Aguado García, D. (2018). Microalgae population dynamics growth with AnMBR effluent: effect of light and phosphorous concentration. Water Science & Technology. 27(11):2566-2577. https://doi.org/10.2166/wst.2018.207S256625772711Bornare, J. B., Adhyapak, U. S., Minde, G. P., Kalyan Raman, V., Sapkal, V. S., & Sapkal, R. S. (2015). Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation. Water Science and Technology, 71(11), 1654-1660. doi:10.2166/wst.2015.135Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097-3105. doi:10.1016/j.biortech.2009.12.026Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. doi:10.1016/j.biotechadv.2007.02.001Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.-A., & Steyer, J.-P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102(1), 207-214. doi:10.1016/j.biortech.2010.06.154Cuaresma, M., Janssen, M., Vílchez, C., & Wijffels, R. H. (2011). Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresource Technology, 102(8), 5129-5137. doi:10.1016/j.biortech.2011.01.078Ducobu, H., Huisman, J., Jonker, R. R., & Mur, L. R. (1998). COMPETITION BETWEEN A PROCHLOROPHYTE AND A CYANOBACTERIUM UNDER VARIOUS PHOSPHORUS REGIMES: COMPARISON WITH THE DROOP MODEL. Journal of Phycology, 34(3), 467-476. doi:10.1046/j.1529-8817.1998.340467.xGiménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014Hessen, D. O., Færøvig, P. J., & Andersen, T. (2002). LIGHT, NUTRIENTS, AND P:C RATIOS IN ALGAE: GRAZER PERFORMANCE RELATED TO FOOD QUALITY AND QUANTITY. Ecology, 83(7), 1886-1898. doi:10.1890/0012-9658(2002)083[1886:lnapcr]2.0.co;2Hsueh, H. T., Li, W. J., Chen, H. H., & Chu, H. (2009). Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. Journal of Photochemistry and Photobiology B: Biology, 95(1), 33-39. doi:10.1016/j.jphotobiol.2008.11.010Huisman, J., & Weissing, F. J. (1994). Light-Limited Growth and Competition for Light in Well-Mixed Aquatic Environments: An Elementary Model. Ecology, 75(2), 507-520. doi:10.2307/1939554Huisman, J., Jonker, R. R., Zonneveld, C., & Weissing, F. J. (1999). COMPETITION FOR LIGHT BETWEEN PHYTOPLANKTON SPECIES: EXPERIMENTAL TESTS OF MECHANISTIC THEORY. Ecology, 80(1), 211-222. doi:10.1890/0012-9658(1999)080[0211:cflbps]2.0.co;2Jonker, J. G. G., & Faaij, A. P. C. (2013). Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Applied Energy, 102, 461-475. doi:10.1016/j.apenergy.2012.07.053Laliberté, G., Lessard, P., de la Noüe, J., & Sylvestre, S. (1997). Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresource Technology, 59(2-3), 227-233. doi:10.1016/s0960-8524(96)00144-7Litchman, E. (2003). Competition and coexistence of phytoplankton under fluctuating light: experiments with two cyanobacteria. Aquatic Microbial Ecology, 31, 241-248. doi:10.3354/ame031241Marcilhac, C., Sialve, B., Pourcher, A.-M., Ziebal, C., Bernet, N., & Béline, F. (2014). Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Research, 64, 278-287. doi:10.1016/j.watres.2014.07.012Martínez, M. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73(3), 263-272. doi:10.1016/s0960-8524(99)00121-2Grima, E. M., Camacho, F. G., Pérez, J. A. S., Sevilla, J. M. F., Fernández, F. G. A., & Gómez, A. C. (1994). A mathematical model of microalgal growth in light-limited chemostat culture. Journal of Chemical Technology AND Biotechnology, 61(2), 167-173. doi:10.1002/jctb.280610212Molina Grima, E., García Camacho, F., Sánchez Pérez, J. A., Acién Fernández, F. G., & Fernández Sevilla, J. M. (1997). Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzyme and Microbial Technology, 21(5), 375-381. doi:10.1016/s0141-0229(97)00012-4Mulbry, W., Kondrad, S., Pizarro, C., & Kebede-Westhead, E. (2008). Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresource Technology, 99(17), 8137-8142. doi:10.1016/j.biortech.2008.03.073Pachés, M., Romero, I., Hermosilla, Z., & Martinez-Guijarro, R. (2012). PHYMED: An ecological classification system for the Water Framework Directive based on phytoplankton community composition. Ecological Indicators, 19, 15-23. doi:10.1016/j.ecolind.2011.07.003Passarge, J., Hol, S., Escher, M., & Huisman, J. (2006). COMPETITION FOR NUTRIENTS AND LIGHT: STABLE COEXISTENCE, ALTERNATIVE STABLE STATES, OR COMPETITIVE EXCLUSION? Ecological Monographs, 76(1), 57-72. doi:10.1890/04-1824Powell, N., Shilton, A. N., Pratt, S., & Chisti, Y. (2008). Factors Influencing Luxury Uptake of Phosphorus by Microalgae in Waste Stabilization Ponds. Environmental Science & Technology, 42(16), 5958-5962. doi:10.1021/es703118sRichardson, B., Orcutt, D. M., Schwertner, H. A., Martinez, C. L., & Wickline, H. E. (1969). Effects of Nitrogen Limitation on the Growth and Composition of Unicellular Algae in Continuous Culture. Applied Microbiology, 18(2), 245-250. doi:10.1128/aem.18.2.245-250.1969Robles, Á., Durán, F., Ruano, M. V., Ribes, J., Rosado, A., Seco, A., & Ferrer, J. (2015). Instrumentation, control, and automation for submerged anaerobic membrane bioreactors. Environmental Technology, 36(14), 1795-1806. doi:10.1080/09593330.2015.1012180Ruiz, J., Arbib, Z., Álvarez-Díaz, P. D., Garrido-Pérez, C., Barragán, J., & Perales, J. A. (2014). Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus. Journal of Biotechnology, 178, 32-37. doi:10.1016/j.jbiotec.2014.03.001Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247-253. doi:10.1016/j.biortech.2012.09.022Ruiz-Martínez, A., Serralta, J., Seco, A., & Ferrer, J. (2016). Modeling light and temperature influence on ammonium removal by Scenedesmus sp. under outdoor conditions. Water Science and Technology, 74(8), 1964-1970. doi:10.2166/wst.2016.383Sturm, B. S. M., & Lamer, S. L. (2011). An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Applied Energy, 88(10), 3499-3506. doi:10.1016/j.apenergy.2010.12.056Di Termini, I., Prassone, A., Cattaneo, C., & Rovatti, M. (2011). On the nitrogen and phosphorus removal in algal photobioreactors. Ecological Engineering, 37(6), 976-980. doi:10.1016/j.ecoleng.2011.01.006Donk, E., & Kilham, S. S. (1990). TEMPERATURE EFFECTS ON SILICON- AND PHOSPHORUS-LIMITED GROWTH AND COMPETITIVE INTERACTIONS AMONG THREE DIATOMS1. Journal of Phycology, 26(1), 40-50. doi:10.1111/j.0022-3646.1990.00040.xViruela, A., Murgui, M., Gómez-Gil, T., Durán, F., Robles, Á., Ruano, M. V., … Seco, A. (2016). Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed with pre-treated sewage. Bioresource Technology, 218, 447-454. doi:10.1016/j.biortech.2016.06.116Weissing, F. J., & Huisman, J. (1994). Growth and Competition in a Light Gradient. Journal of Theoretical Biology, 168(3), 323-336. doi:10.1006/jtbi.1994.1113Yang, Y., Tang, F., Su, X., Yin, H., & Ge, F. (2016). Identification and evaluation of a dominant alga from municipal wastewater in removal of nutrients. Water Science and Technology, 74(11), 2727-2735. doi:10.2166/wst.2016.437Wu, Y.-H., Yu, Y., Li, X., Hu, H.-Y., & Su, Z.-F. (2012). Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition. Bioresource Technology, 112, 193-198. doi:10.1016/j.biortech.2012.02.03

    Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage

    Full text link
    [EN] The objective of this work was to evaluate the performance of a pilot scale membrane photobioreactor (MPBR) for treating the effluent of an anaerobic membrane bioreactor (AnMBR) system. In particular, new experimental data on microalgae productivity, nutrient recovery, CO2 biofixation and energy recovery potential was obtained under different operating conditions, which would facilitate moving towards cost-effective microalgae cultivation on wastewater. To this aim, a 2.2-m(3) MPBR equipped with two commercial-scale hollow-fibre ultrafiltration membrane modules was operated treating the nutrient-loaded effluent from an AnMBR for sewage treatment. The influence of several design, environmental and operating parameters on MPBR performance was studied. Among the conditions evaluated, variations in solar irradiance significantly affected the nutrient recovery rate (NRR). Operating at temperatures above 25 degrees C and high biomass concentrations, which increased light shading effect, negatively affected biomass production and NRR. Maximum biomass productivity of 66 mg VSS L-1 d(-1) (areal productivity of 15.78 g VSS m(-2) d(-1)) and NRR of 7.68 mg N L-1 d(-1) and 1.17 mg P L-1 d(-1) were achieved when operating at 4.5 days of biomass retention time. These results would outcome maximum theoretical energy recoveries and CO2 biofixations of about 0.43 kWh and 0.51 kg CO2 per m(3) of treated water, respectively. Moreover, the excellent quality permeate that was produced (i.e. negligible levels of pathogens and suspended solids) represents a reclaimed water source. (C) 2017 Elsevier Ltd. All rights reserved.This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2011-28595-C02-01/02, CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF) and Generalitat Valenciana (GVA-ACOMP2013/203), which are gratefully acknowledged. The authors also like to acknowledge the support received from Generalitat Valenciana via one VALi+d postdoctoral grant (APOSTD/2014/049).Viruela Navarro, A.; Robles Martínez, Á.; Durán Pinzón, F.; Ruano García, MV.; Barat, R.; Ferrer, J.; Seco Torrecillas, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production. 178:665-674. https://doi.org/10.1016/j.jclepro.2017.12.223S66567417

    Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment

    Full text link
    [EN] Microalgae cultivation appears to be a promising technology for treating nutrient-rich effluents from anaerobic membrane bioreactors, as microalgae are able to consume nutrients from sewage without an organic carbon source, although the sulphide formed during the anaerobic treatment does have negative effects on microalgae growth. Short and long-term experiments were carried out on the effects of sulphide on a mixed microalgae culture. The short-term experiments showed that the oxygen production rate (OPR) dropped as sulphide concentration increased: a concentration of 5 mg S L¿1 reduced OPR by 43%, while a concentration of 50 mg S L¿1 came close to completely inhibiting microalgae growth. The long-term experiments revealed that the presence of sulphide in the influent had inhibitory effects at sulphide concentrations above 20 mg S L¿1 in the culture, but not at concentrations below 5 mg S L¿1. These conditions favoured Chlorella growth over that of Scenedesmus.This research work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO, CTM2011-28595-C02-01 and CTM2011-28595-C02-02) jointly with the European Regional Development Fund (ERDF), both of which are gratefully acknowledged. It was also supported by the Spanish Ministry of Education, Culture and Sport via a pre doctoral FPU fellowship to author J. Gonzalez-Camejo (FPU14/05082) and by the Spanish Ministry of Economy and Competitiveness via a pre doctoral FPI fellowship to author R. Serna-Garcia (project CTM2014-54980-C2-1-R)Gonzalez-Camejo, J.; Serna-Garcia, R.; Viruela Navarro, A.; Paches Giner, MAV.; Durán Pinzón, F.; Robles Martínez, Á.; Ruano García, MV.... (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology. 244:15-22. https://doi.org/10.1016/j.biortech.2017.07.126S152224

    Designing an AnMBR-based WWTP for energy recovery from urban wastewater: The role of primary settling and anaerobic digestion

    Full text link
    The main objective of this paper is to assess different treatment schemes for designing a submerged anaerobic membrane bioreactor (AnMBR) based WWTP. The economic impact of including a primary settling (PS) stage and further anaerobic digestion (AD) of the wasted sludge has been evaluated. The following operating scenarios were considered: sulphate-rich and low-sulphate urban wastewater (UWW) treatment at 15 and 30 ºC. To this aim, the optimum combination of design/operating parameters that resulted in minimum total cost (CAPEX plus OPEX) for the different schemes and scenarios was determined. The AnMBR design was based on both simulation and experimental results from an AnMBR plant featuring industrial-scale hollow-fibre membranes fed with UWW from the pre-treatment of a municipal WWTP located in Valencia (Spain). AnMBR without PS and AD was identified as the most economic option for an AnMBR-based WWTP treating low-sulphate UWW (minimum cost of 0.05 per m3 and a maximum surplus energy of 0.1 kW h per m3), whilst AnMBR with PS and AD was the optimum option when treating sulphate-rich UWW (minimum cost of 0.05 per m3 and a maximum surplus energy of 0.09 kW h per m3).This research work was possible thanks to projects CTM2011-28595-C02-01/02 (funded by the Spanish Ministry of Economy and Competitiveness jointly with the European Regional Development Fund and Generalitat Valenciana GVA-ACOMP2013/203) and FCC Aqualia INNPRONTA IISIS IPT-20111023 (partially funded by the Centre for Industrial Technological Development (CDTI), and supported by the Spanish Ministry of Economy and Competitiveness).Pretel, R.; Durán Pinzón, F.; Robles Martínez, Á.; Ruano García, MV.; Ribes Bertomeu, J.; Serralta Sevilla, J.; Ferrer, J. (2015). Designing an AnMBR-based WWTP for energy recovery from urban wastewater: The role of primary settling and anaerobic digestion. Separation and Purification Technology. 156:132-139. doi:10.1016/j.seppur.2015.09.047S13213915

    Instrumentation, control, and automation for submerged anaerobic membrane bioreactors

    Full text link
    A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON® , Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.This research work was supported by the Spanish Ministry of Science and Innovation [grant number CTM2008-06809-C02-01/02]; the Spanish Ministry of Economy and Competitiveness [grant number CTM2011-28595-C02-01/02], jointly with the European Regional Development Fund (ERDF) and Generalitat Valenciana [grant number GVA-ACOMP2013/203].Robles Martínez, Á.; Durán Pinzón, F.; Ruano García, MV.; Ribes Bertomeu, J.; Rosado Muñoz, A.; Seco Torrecillas, A.; Ferrer, J. (2015). Instrumentation, control, and automation for submerged anaerobic membrane bioreactors. Environmental Technology. 36(14):1795-1806. https://doi.org/10.1080/09593330.2015.1012180S17951806361

    Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study

    Full text link
    [EN] The main objective of this study is to propose guidelines for designing submerged anaerobic MBR (AnMBR) technology for municipal wastewater treatment. The design methodology was devised on the basis of simulation and experimental results from an AnMBR plant featuring industrial-scale hollow-fibre membranes. The proposed methodology aims to minimise both capital expenditure and operating expenses, and the key parameters considered were: hydraulic retention time, solids retention time, mixed liquor suspended solids concentration in the membrane tank, 20 C-standardised critical flux, specificgas demand per square metre of membrane area, and flow of sludge being recycled from the membrane tank to the anaerobic reactor. An AnMBR WWTP operating at 15 and 30 C with both sulphate-rich (5.7 mg COD mg 1 SO4-S) and low-sulphate (57 mg COD mg 1 SO4-S) municipal wastewater was designed. The minimum cost of the designed plant was 0.097 and 0.070 per m3 when treating sulphate- rich and low-sulphate wastewater, respectively.This research work was possible thanks to projects CTM2011-28595-C02-01/02 (funded by the Spanish Ministry of Economy and Competitiveness jointly with the European Regional Development Fund and Generalitat Valenciana GVA-ACOMP2013/203) and FCC Aqualia INNPRONTA IISIS IPT-20111023 (partially funded by the CDTI (Centre for Industrial Technological Development) and supported by the Spanish Ministry of Economy and Competitiveness).Ferrer, J.; Pretel, R.; Durán Pinzón, F.; Giménez, J.; Robles Martínez, Á.; Ruano García, MV.; Serralta Sevilla, J.... (2015). Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study. Separation and Purification Technology. 141:378-386. https://doi.org/10.1016/j.seppur.2014.12.018S37838614
    corecore