15 research outputs found

    Performance and Diagnostic Value of Genome-Wide Noninvasive Prenatal Testing in Multiple Gestations.

    Full text link
    OBJECTIVE: To evaluate the accuracy and diagnostic value of genome-wide noninvasive prenatal testing (NIPT) for the detection of fetal aneuploidies in multiple gestations, with a focus on dichorionic-diamniotic twin pregnancies. METHODS: We performed a retrospective cohort study including data from pregnant women with a twin or higher-order gestation who underwent genome-wide NIPT at one of the eight Belgian genetic centers between November 1, 2013, and March 1, 2020. Chorionicity and amnionicity were determined by ultrasonography. Follow-up invasive testing was carried out in the event of positive NIPT results. Sensitivity and specificity were calculated for the detection of trisomy 21, 18, and 13 in the dichorionic-diamniotic twin cohort. RESULTS: Unique NIPT analyses were performed for 4,150 pregnant women with a multiple gestation and an additional 767 with vanishing gestations. The failure rate in multiple gestations excluding vanishing gestations ranged from 0% to 11.7% among the different genetic centers. Overall, the failure rate was 4.8%, which could be reduced to 1.2% after single resampling. There were no common fetal trisomies detected among the 86 monochorionic-monoamniotic and 25 triplet cases. Two monochorionic-diamniotic twins had an NIPT result indicative of a trisomy 21, which was confirmed in both fetuses. Among 2,716 dichorionic-diamniotic twin gestations, a sensitivity of 100% (95% CI 74.12-100%) and a specificity of 100% (95% CI 99.86-100%) was reached for trisomy 21 (n=12). For trisomy 18 (n=3), the respective values were 75% (95% CI 30.06-95.44%) sensitivity and 100% (95% CI 99.86-100%) specificity, and for trisomy 13 (n=2), 100% (95% CI 20.65-100%) sensitivity and 99.96% (95% CI 99.79-99.99%) specificity. In the vanishing gestation group, 28 NIPT results were positive for trisomy 21, 18, or 13, with only five confirmed trisomies. CONCLUSION: Genome-wide NIPT performed accurately for detection of aneuploidy in dichorionic-diamniotic twin gestations

    Validation of an ultrasensitive digital droplet PCR assay for HIV-2 plasma RNA quantification

    No full text
    Introduction: Low or undetectable plasma viral load (VL) using current qPCR assays is common for HIV-2 patients. Digital PCR is an emerging technology enabling more precision and reproducibility than qPCR at low DNA/RNA copy numbers. Available data related to digital droplet PCR (ddPCR, Bio-Rad) underscore issues linked to the threshold definition of positivity, coupled to the specificity of low copy results (1). Materials and Methods: A RT-PCR protocol was set up using the One-Step RT-ddPCR Kit for Probes on the QX200 platform (Bio-Rad, Hercules, CA) in an accredited environment (ISO15189:2012 norm). Parameters tested were in line with the digital MIQE guidelines (2). Inter-run coefficient of variation (CV) was established using synthetic RNA controls diluted in HIV-negative plasma. The ddPCR assay was compared to a qRT-PCR previously used in routine (LOQ 50 cop/mL (3)) using 46 clinical samples and the NIBSC international HIV-2 RNA standard. Results: The optimal PCR efficiency and the best separation between positive and negative droplets were obtained with a mixture containing 0.5 mM manganese acetate, 700 nM primers and 250 nM of the 5’FAM-probe. Using a manual threshold to define positivity, 7.74% of negative controls (n=168) were scored as positive due to one positive droplet. The presence of two positive droplets or more was not observed for negative controls. Serial dilutions of a positive control showed excellent linearity (R2=0.999) and enabled us to define a limit of quantification of two positives droplets, which corresponds to 0.14 copies/μL in the reaction mixture and to seven copies per mL of plasma. The inter-run coefficient of variation was 3.37% at a mean value of 4,468 cop/mL, 19.59% at 416 cop/mL and 32.28% at 8 cop/mL. The NIBSC standard of 1,000 IU was quantified 1,400 copies by ddPCR and close to 5,000 copies by qPCR (delta log superior to 0.5). Among 46 clinical samples, 22 were undetectable with both qPCR and ddPCR, 12 were detected with both methods (respective means of 10,612 and 2,224 cop/mL, delta log=0.68) and 12 others were quantified by ddPCR only below 50 cop/mL (mean=16 cop/mL). Conclusions: We validated a ddPCR HIV-2 VL assay that is more sensitive and more reproducible than the qPCR assay used as comparator, with a limit of quantification of 7 cop/mL of plasma. A careful definition of the limit of blank allows the management of false positive droplets, but the variable user-defined positive threshold may be an issue for compliance to the quality norms

    Wieacker-Wolff syndrome, a distinctive phenotype of arthrogryposis multiplex congenita caused by a "de novo" gene partial deletion.

    No full text
    Unusual fetal arthrogryposis on ultrasound should draw attention to look for additional lower limb anomalies. Precise genetic counseling may be obtained from deletion on Xq11.2 as for  gene sequencing diagnostic for Wieacker-Wolff syndrome

    Validation of an ultrasensitive digital droplet PCR assay for HIV-2 plasma RNA quantification

    No full text
    Introduction: Low or undetectable plasma viral load (VL) using current qPCR assays is common for HIV-2 patients. Digital PCR is an emerging technology enabling more precision and reproducibility than qPCR at low DNA/RNA copy numbers. Available data related to digital droplet PCR (ddPCR, Bio-Rad) underscore issues linked to the threshold definition of positivity, coupled to the specificity of low copy results (1). Materials and Methods: A RT-PCR protocol was set up using the One-Step RT-ddPCR Kit for Probes on the QX200 platform (Bio-Rad, Hercules, CA) in an accredited environment (ISO15189:2012 norm). Parameters tested were in line with the digital MIQE guidelines (2). Inter-run coefficient of variation (CV) was established using synthetic RNA controls diluted in HIV-negative plasma. The ddPCR assay was compared to a qRT-PCR previously used in routine (LOQ 50 cop/mL (3)) using 46 clinical samples and the NIBSC international HIV-2 RNA standard. Results: The optimal PCR efficiency and the best separation between positive and negative droplets were obtained with a mixture containing 0.5 mM manganese acetate, 700 nM primers and 250 nM of the 5’FAM-probe. Using a manual threshold to define positivity, 7.74% of negative controls (n=168) were scored as positive due to one positive droplet. The presence of two positive droplets or more was not observed for negative controls. Serial dilutions of a positive control showed excellent linearity (R2=0.999) and enabled us to define a limit of quantification of two positives droplets, which corresponds to 0.14 copies/μL in the reaction mixture and to seven copies per mL of plasma. The inter-run coefficient of variation was 3.37% at a mean value of 4,468 cop/mL, 19.59% at 416 cop/mL and 32.28% at 8 cop/mL. The NIBSC standard of 1,000 IU was quantified 1,400 copies by ddPCR and close to 5,000 copies by qPCR (delta log superior to 0.5). Among 46 clinical samples, 22 were undetectable with both qPCR and ddPCR, 12 were detected with both methods (respective means of 10,612 and 2,224 cop/mL, delta log=0.68) and 12 others were quantified by ddPCR only below 50 cop/mL (mean=16 cop/mL). Conclusions: We validated a ddPCR HIV-2 VL assay that is more sensitive and more reproducible than the qPCR assay used as comparator, with a limit of quantification of 7 cop/mL of plasma. A careful definition of the limit of blank allows the management of false positive droplets, but the variable user-defined positive threshold may be an issue for compliance to the quality norms

    HIV-1 proviral resistance mutations: usefulness in clinical practice.

    No full text
    Objectives Transmitted HIV strains may harbour drug resistance mutations. HIV-1 drug resistance mutations are currently detected in plasma viral RNA. HIV-1 proviral DNA could be an alternative marker, as it persists in infected cells. Methods This was a prospective study assessing the prevalence and persistence of HIV-1 drug resistance mutations in DNA from CD4 cells before and after protease inhibitor (PI)- or nonnucleoside reverse transcriptase inhibitor (NNRTI)-based therapy initiation in 69 drug-naĂŻve patients. Results Before therapy, 90 and 66% of detected mutations were present in CD4 cells and plasma, respectively. We detected seven key mutations, and four of these (M184M/V, M184M/I, K103K/N and M46M/I) were only found in the cells. When treatment was started, 40 patients were followed; the mutations detected at the naĂŻve stage remained present for at least 1 year. Under successful treatment, new key mutations emerged in CD4 cells (M184I, M184M/I and Y188Y/H). Conclusions The proportion of mutations detected in the DNA was statistically significantly higher than that detected in standard RNA genotyping, and these mutations persisted for at least 1 year irrespective of therapy. The pre-existence of resistance mutations did not jeopardise treatment outcome when the drug concerned was not included in the regimen. Analysis of HIV-1 DNA could be useful in chronic infections or when switching therapy in patients with undetectable viraemia

    Genetic polymorphisms and resistance mutations of HIV type 2 in antiretroviral-naive patients in Burkina Faso.

    No full text
    Natural polymorphisms in the pol gene of HIV-2 may influence the susceptibility to antiretroviral drugs and the choice of treatment. We collected samples in centers for anonymous HIV testing in Ouagadougou, Burkina Faso, in patients supposedly naive for any antiretroviral treatment. Eighty-four samples were first tested as HIV-2 positive in Burkina Faso and then shipped to Brussels, Belgium, for confirmation of the serological status and plasma viral load. Fifty-two samples were confirmed as HIV-2 positive in Belgium. Twelve others were HIV-1 positive and 20 were dually reactive. Twenty-one of HIV-2 confirmed samples had an HIV-2 plasma viral load higher than 1000 copies/ml. These viruses were sequenced in the protease and reverse trancriptase genes and 17 sequences of the pol gene were obtained. Highly polymorphic positions were identified in protease and RT genes. Two samples harbored known resistance mutations: M184V RT mutation in one and Q151M with M184V in the other. Phylogenetic analysis showed that viruses in Burkina Faso did not cluster separately from published sequences from neighboring countries. The two resistant strains were unrelated. Our findings imply either that resistant viruses are circulating in Burkina Faso or that some individuals take unsupervised treatment. Both hypotheses present problems
    corecore