182 research outputs found

    Correcting for Activity Effects on the Temperatures, Radii, and Estimated Masses of Low-Mass Stars and Brown Dwarfs

    Full text link
    We present empirical relations for determining the amount by which the effective temperatures and radii---and therefore the estimated masses---of low-mass stars and brown dwarfs are altered due to chromospheric activity. Accurate estimates of stellar radii are especially important in the context of searches for transiting exoplanets, which rely upon the assumed stellar radius/density to infer the planet radius/density. Our relations are based on a large set of well studied low-mass stars in the field and on a set of benchmark low-mass eclipsing binaries. The relations link the amount by which an active object's temperature is suppressed, and its radius inflated, to the strength of its Halpha emission. These relations are found to approximately preserve bolometric luminosity. We apply these relations to the peculiar brown-dwarf eclipsing binary 2M0535-05, in which the active, higher-mass brown dwarf has a cooler temperature than its inactive, lower-mass companion. The relations correctly reproduce the observed temperatures and radii of 2M0535-05 after accounting for the Halpha emission; 2M0535-05 would be in precise agreement with theoretical isochrones were it inactive. The relations that we present are applicable to brown dwarfs and low-mass stars with masses below 0.8 Msun and for which the activity, as measured by Halpha, is in the range -4.6 < log Lha/Lbol < -3.3. We expect these relations to be most useful for correcting radius and mass estimates of low-mass stars and brown dwarfs over their active lifetimes (few Gyr). We also discuss the implications of this work for determinations of young cluster IMFs.Comment: To appear in Cool Stars 17 proceeding

    Discovery of a Visual T-Dwarf Triple System and Binarity at the L/T Transition

    Get PDF
    We present new high contrast imaging of 8 L/T transition brown dwarfs using the NIRC2 camera on the Keck II telescope. One of our targets, the T3.5 dwarf 2MASS J08381155 + 1511155, was resolved into a hierarchal triple with projected separations of 2.5+/-0.5 AU and 27+/-5 AU for the BC and A(BC) components respectively. Resolved OSIRIS spectroscopy of the A(BC) components confirm that all system members are T dwarfs. The system therefore constitutes the first triple T-dwarf system ever reported. Using resolved photometry to model the integrated-light spectrum, we infer spectral types of T3, T3, and T4.5 for the A, B, and C components respectively. The uniformly brighter primary has a bluer J-Ks color than the next faintest component, which may reflect a sensitive dependence of the L/T transition temperature on gravity, or alternatively divergent cloud properties amongst components. Relying on empirical trends and evolutionary models we infer a total system mass of 0.034-0.104 Msun for the BC components at ages of 0.3-3 Gyr, which would imply a period of 12-21 yr assuming the system semi-major axis to be similar to its projection. We also infer differences in effective temperatures and surface gravities between components of no more than ~150 K and ~0.1 dex. Given the similar physical properties of the components, the 2M0838+15 system provides a controlled sample for constraining the relative roles of effective temperature, surface gravity, and dust clouds in the poorly understood L/T transition regime. Combining our imaging survey results with previous work we find an observed binary fraction of 4/18 or 22_{-8}^{+10}% for unresolved spectral types of L9-T4 at separations >~0.1 arcsec. This translates into a volume-corrected frequency of 13^{-6}_{+7}%, which is similar to values of ~9-12% reported outside the transition. (ABRIDGED)Comment: Accepted for publication in the Astrophysical Journal. 23 pages, 12 figure

    The Impact of Chromospheric Activity on Observed Initial Mass Functions

    Get PDF
    Using recently established empirical calibrations for the impact of chromospheric activity on the radii, effective temperatures, and estimated masses of active low-mass stars and brown dwarfs, we reassess the shape of the initial mass function (IMF) across the stellar/substellar boundary in the Upper Sco star-forming region (age 5-10 Myr). We adjust the observed effective temperatures to warmer values using the observed strength of the chromospheric Hα\alpha emission, and redetermine the estimated masses of objects using pre--main-sequence evolutionary tracks in the H-R diagram. The effect of the activity-adjusted temperatures is to shift the objects to higher masses by 3-100%. While the slope of the resulting IMF at substellar masses is not strongly changed, the peak of the IMF does shift from ~0.06 to ~0.11 Msun. Moreover, for objects with masses <~0.2 Msun, the ratio of brown dwarfs to stars changes from ~80% to ~33%. These results suggest that activity corrections are essential for studies of the substellar mass function, if the masses are estimated from spectral types or from effective temperatures.Comment: Accepted by ApJ, 9 pages, 2 figures. This version corrects a minor typo in the abstrac

    Dynamical Mass of the Substellar Benchmark Binary HD 130948BC

    Full text link
    (Abridged) We present Keck, HST, and Gemini-North observations of the L4+L4 binary HD 130948BC which together span ~70% of the binary's orbital period. We determine a total dynamical mass of 0.109+/-0.002 Msun (114+/-2 Mjup). The flux ratio is near unity, so both components are unambiguously substellar for any plausible mass ratio. An independent constraint on the age of the system is available from the G2V primary HD 130948A. The available indicators suggest an age comparable to the Hyades, with the most precise age being 0.79 Gyr based on gyrochronology. Therefore, HD 130948BC is now a unique benchmark among field L and T dwarfs, with a well-determined mass, luminosity, and age. We find that substellar theoretical models disagree with our observations. Both components of HD 130948BC appear to be overluminous by a factor of ~2-3x compared to evolutionary models. The age of the system would have to be notably younger than the gyro age to ameliorate the luminosity disagreement. However, regardless of the adopted age, evolutionary and atmospheric models give inconsistent results, indicating systematic errors in at least one class of models, possibly both. The masses of HD 130948BC happen to be very near the theoretical mass limit for lithium burning, and thus measuring the differential lithium depletion between B and C will provide a uniquely discriminating test of theoretical models. The potential underestimate of luminosities by evolutionary models would have wide-ranging implications; therefore, a more refined age estimate for HD 130948A is critically needed.Comment: ApJ, accepted. Note that astro-ph posting date coincides with the periastron passage for this binar

    Limits on the Mass and Initial Entropy of 51 Eri b from Gaia EDR3 Astrometry

    Get PDF
    51 Eri b is one of the only young planets consistent with a wide range of possible initial entropy states, including the cold-start scenario associated with some models of planet formation by core accretion. The most direct way to constrain the initial entropy of a planet is by measuring its luminosity and mass at a sufficiently young age that the initial conditions still matter. We present the tightest upper limit on 51 Eri b's mass yet (M < 11 Mjup at 2σ\sigma) using a cross-calibration of Hipparcos and Gaia EDR3 astrometry and the orbit-fitting code orvara. We also reassess its luminosity using a direct, photometric approach, finding log(Lbol/Lsun) = -5.5±\pm0.2 dex. Combining this luminosity with the 24±\pm3 Myr age of the β\beta Pic moving group, of which 51 Eri is a member, we derive mass distributions from a grid of evolutionary models that spans a wide range of initial entropies. We find that 51 Eri b is inconsistent with the coldest-start scenarios, requiring an initial entropy of >8 kBk_B/baryon at 97% confidence. This result represents the first observational constraint on the initial entropy of a potentially cold-start planet, and it continues the trend of dynamical masses for directly imaged planets pointing to warm- or hot-start formation scenarios.Comment: Accepted for publication in MNRAS (9 pages, 6 figures
    corecore