5,615 research outputs found

    Quantum XY criticality in a two-dimensional Bose gas near the Mott transition

    Full text link
    We derive the equation of state of a two-dimensional Bose gas in an optical lattice in the framework of the Bose-Hubbard model. We focus on the vicinity of the multicritical points where the quantum phase transition between the Mott insulator and the superfluid phase occurs at fixed density and belongs to the three-dimensional XY model universality class. Using a nonperturbative renormalization-group approach, we compute the pressure P(μ,T)P(\mu,T) as a function of chemical potential and temperature. Our results compare favorably with a calculation based on the quantum O(2) model -- we find the same universal scaling function -- and allow us to determine the region of the phase diagram in the vicinity of a quantum multicritical point where the equation of state is universal. We also discuss the possible experimental observation of quantum XY criticality in a ultracold gas in an optical lattice.Comment: v1) 6 pages, 4 figures. v2) Revised versio

    Quantum criticality of a Bose gas in an optical lattice near the Mott transition

    Full text link
    We derive the equation of state of bosons in an optical lattice in the framework of the Bose-Hubbard model. Near the density-driven Mott transition, the expression of the pressure P({\mu},T) versus chemical potential and temperature is similar to that of a dilute Bose gas but with renormalized mass m^* and scattering length a^*. m^* is the mass of the elementary excitations at the quantum critical point governing the transition from the superfluid phase to the Mott insulating phase, while a^* is related to their effective interaction at low energy. We use a nonperturbative renormalization-group approach to compute these parameters as a function of the ratio t/U between hopping amplitude and on-site repulsion.Comment: v1) 4 pages, 6 figures. v2) Significant rewriting (new title) with more emphasis on the quantum critical behavior near the Mott transitio

    Quantum non-malleability and authentication

    Get PDF
    In encryption, non-malleability is a highly desirable property: it ensures that adversaries cannot manipulate the plaintext by acting on the ciphertext. Ambainis, Bouda and Winter gave a definition of non-malleability for the encryption of quantum data. In this work, we show that this definition is too weak, as it allows adversaries to "inject" plaintexts of their choice into the ciphertext. We give a new definition of quantum non-malleability which resolves this problem. Our definition is expressed in terms of entropic quantities, considers stronger adversaries, and does not assume secrecy. Rather, we prove that quantum non-malleability implies secrecy; this is in stark contrast to the classical setting, where the two properties are completely independent. For unitary schemes, our notion of non-malleability is equivalent to encryption with a two-design (and hence also to the definition of Ambainis et al.). Our techniques also yield new results regarding the closely-related task of quantum authentication. We show that "total authentication" (a notion recently proposed by Garg, Yuen and Zhandry) can be satisfied with two-designs, a significant improvement over the eight-design construction of Garg et al. We also show that, under a mild adaptation of the rejection procedure, both total authentication and our notion of non-malleability yield quantum authentication as defined by Dupuis, Nielsen and Salvail.Comment: 20+13 pages, one figure. v2: published version plus extra material. v3: references added and update

    Dynamics of sliding drops on superhydrophobic surfaces

    Full text link
    We use a free energy lattice Boltzmann approach to investigate numerically the dynamics of drops moving across superhydrophobic surfaces. The surfaces comprise a regular array of posts small compared to the drop size. For drops suspended on the posts the velocity increases as the number of posts decreases. We show that this is because the velocity is primarily determined by the contact angle which, in turn, depends on the area covered by posts. Collapsed drops, which fill the interstices between the posts, behave in a very different way. The posts now impede the drop behaviour and the velocity falls as their density increases.Comment: 7 pages, 4 figures, accepted for publication in Europhys. Let

    Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions

    Full text link
    We study the thermodynamics of the relativistic quantum O(NN) model in two space dimensions. In the vicinity of the zero-temperature quantum critical point (QCP), the pressure can be written in the scaling form P(T)=P(0)+N(T^3/c^2)\calF_N(\Delta/T) where cc is the velocity of the excitations at the QCP and Δ\Delta is a characteristic zero-temperature energy scale. Using both a large-NN approach to leading order and the nonperturbative renormalization group, we compute the universal scaling function \calF_N. For small values of NN (N10N\lesssim 10) we find that \calF_N(x) is nonmonotonous in the quantum critical regime (x1|x|\lesssim 1) with a maximum near x=0x=0. The large-NN approach -- if properly interpreted -- is a good approximation both in the renormalized classical (x1x\lesssim -1) and quantum disordered (x1x\gtrsim 1) regimes, but fails to describe the nonmonotonous behavior of \calF_N in the quantum critical regime. We discuss the renormalization-group flows in the various regimes near the QCP and make the connection with the quantum nonlinear sigma model in the renormalized classical regime. We compute the Berezinskii-Kosterlitz-Thouless transition temperature in the quantum O(2) model and find that in the vicinity of the QCP the universal ratio \Tkt/\rho_s(0) is very close to π/2\pi/2, implying that the stiffness \rho_s(\Tkt^-) at the transition is only slightly reduced with respect to the zero-temperature stiffness ρs(0)\rho_s(0). Finally, we briefly discuss the experimental determination of the universal function \calF_2 from the pressure of a Bose gas in an optical lattice near the superfluid--Mott-insulator transition.Comment: v1) 16 pages, 10 figures. v2) Revised versio

    Rheology of cholesteric blue phases

    Full text link
    Blue phases of cholesteric liquid crystals offer a spectacular example of naturally occurring disclination line networks. Here we numerically solve the hydrodynamic equations of motion to investigate the response of three types of blue phases to an imposed Poiseuille flow. We show that shear forces bend and twist and can unzip the disclination lines. Under gentle forcing the network opposes the flow and the apparent viscosity is significantly higher than that of an isotropic liquid. With increased forcing we find strong shear thinning corresponding to the disruption of the defect network. As the viscosity starts to drop, the imposed flow sets the network into motion. Disclinations break-up and re-form with their neighbours in the flow direction. This gives rise to oscillations in the time-dependent measurement of the average stress.Comment: 4 pages, 4 figure

    Superconductivity of Quasi-One-Dimensional Electrons in Strong Magnetic Field

    Full text link
    The superconductivity of quasi-one-dimensional electrons in the magnetic field is studied. The system is described as the one-dimensional electrons with no frustration due to the magnetic field. The interaction is assumed to be attractive between electrons in the nearest chains, which corresponds to the lines of nodes of the energy gap in the absence of the magnetic field. The effective interaction depends on the magnetic field and the transverse momentum. As the magnetic field becomes strong, the transition temperature of the spin-triplet superconductivity oscillates, while that of the spin-singlet increases monotonically.Comment: 15 pages, RevTeX, 3 PostScript figures in uuencoded compressed tar file are appende

    Infrared behavior of interacting bosons at zero temperature

    Full text link
    We review the infrared behavior of interacting bosons at zero temperature. After a brief discussion of the Bogoliubov approximation and the breakdown of perturbation theory due to infrared divergences, we present two approaches that are free of infrared divergences -- Popov's hydrodynamic theory and the non-perturbative renormalization group -- and allow us to obtain the exact infrared behavior of the correlation functions. We also point out the connection between the infrared behavior in the superfluid phase and the critical behavior at the superfluid--Mott-insulator transition in the Bose-Hubbard model.Comment: 8 pages, 4 figures. Proceedings of the 19th International Laser Physics Workshop, LPHYS'10 (Foz do Iguacu, Brazil, July 5-9, 2010
    corecore