We derive the equation of state of bosons in an optical lattice in the
framework of the Bose-Hubbard model. Near the density-driven Mott transition,
the expression of the pressure P({\mu},T) versus chemical potential and
temperature is similar to that of a dilute Bose gas but with renormalized mass
m^* and scattering length a^*. m^* is the mass of the elementary excitations at
the quantum critical point governing the transition from the superfluid phase
to the Mott insulating phase, while a^* is related to their effective
interaction at low energy. We use a nonperturbative renormalization-group
approach to compute these parameters as a function of the ratio t/U between
hopping amplitude and on-site repulsion.Comment: v1) 4 pages, 6 figures. v2) Significant rewriting (new title) with
more emphasis on the quantum critical behavior near the Mott transitio