5 research outputs found

    Effects of serum proteins on corrosion behavior of ISO 5832–9 alloy modified by titania coatings

    Get PDF
    Stainless steel ISO 5832–9 type is often used to perform implants which operate in protein-containing physiological environments. The interaction between proteins and surface of the implant may affect its corrosive properties. The aim of this work was to study the effect of selected serum proteins (albumin and γ-globulins) on the corrosion of ISO 5832–9 alloy (trade name M30NW) which surface was modified by titania coatings. These coatings were obtained by sol– gel method and heated at temperatures of 400 and 800 °C. To evaluate the effect of the proteins, the corrosion tests were performed with and without the addition of proteins with concentration of 1 g L−1 to the physiological saline solution (0.9 % NaCl, pH 7.4) at 37 °C. The tests were carried out within 7 days. The following electrochemical methods were used: open circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy. In addition, surface analysis by optical microscopy and X-ray photoelectron spectroscopy (XPS) method was done at the end of weekly corrosion tests. The results of corrosion tests showed that M30NW alloy both uncoated and modified with titania coatings exhibits a very good corrosion resistance during weekly exposition to corrosion medium. The best corrosion resistance in 0.9 % NaCl solution is shown by alloy samples modified by titania coating annealed at 400 °C. The serumproteins have no significant effect onto corrosion of investigated biomedical steel. The XPS results confirmed the presence of proteins on the alloy surface after 7 days of immersion in proteincontaining solutions.The investigations were supported by the National Science Centre project No. N N507 501339. The authors gratefully acknowledge Dr. Janusz Sobczak and Dr. hab. Wojciech Lisowski from Institute of Physical Chemistry of PAS for XPS surface analyses

    Cell interactions with superhydrophilic and superhydrophobic surfaces

    No full text
    Interactions of cells with biomaterials dictate their biocompatibility and biofunctionality, and are strongly influenced by surface properties. Moreover, it is important to control cell adhesion to surfaces for biological studies and diagnosis. Surface properties influence protein adsorption in terms of conformation and quantity adsorbed that further affects cell adhesion and proliferation. Several works have demonstrated that wettability influences cell attachment and proliferation. However, most studies have reported the influence of the surface energy of smooth substrates within a limited range of wettabilities. By controlling the roughness and the hydrophilicity of the surface, one can obtain biomimetic substrates with a wettability ranging from superhydrophobic to superhydrophilic. This review intends to summarize recent works, where the interaction of cells with surfaces with extreme wettabilities was investigated. Such information may be relevant in different biomedical and biological applications including diagnosis, cell biology, or tissue engineering
    corecore