484 research outputs found

    Evaluation de la température des composants actifs de puissance

    Get PDF
    Les performances et la durée de vie des convertisseurs statiques d’énergie électrique sont liées à la température des composants actifs de puissance. Dans cet article, la définition de cette température et des méthodes pour la mesurer sont expliquées avant de détailler leurs usages pour caractériser les performances thermiques des modules de puissance. Enfin, seront présentées les solutions existantes et en cours de développement pour effectuer des mesures de température de jonction pendant le fonctionnement d’un convertisseur

    Floquet operator engineering for quantum state stroboscopic stabilization

    Full text link
    Optimal control is a valuable tool for quantum simulation, allowing for the optimized preparation, manipulation, and measurement of quantum states. Through the optimization of a time-dependent control parameter, target states can be prepared to initialize or engineer specific quantum dynamics. In this work, we focus on the tailoring of a unitary evolution leading to the stroboscopic stabilization of quantum states of a Bose-Einstein condensate in an optical lattice. We show how, for states with space and time symmetries, such an evolution can be derived from the initial state-preparation controls; while for a general target state we make use of quantum optimal control to directly generate a stabilizing Floquet operator. Numerical optimizations highlight the existence of a quantum speed limit for this stabilization process, and our experimental results demonstrate the efficient stabilization of a broad range of quantum states in the lattice.Comment: (10 pages, 3 figures

    Comparison of Flow Computation Results with experimental Flow Surveys in a Francis Turbine

    Get PDF
    Three dimensional numerical tools are now commonly used in the design or analysis process of the internai flow of hydraulic machinery. As an illustration of the use of such tools to study the internai flow of a Francis turbine, the computational results obtained in all components of this turbine with an Euler equations solver and two Reynolds Averaged Navier Stokes equations solvers are discussed. The analysis process is illustrated and comparisons with experimental results obtained in the spiral casing and at the outlet of the guide vaoes, runner and draft tube are presented

    The primary cilium protein folliculin is part of the autophagy signaling pathway to regulate epithelial cell size in response to fluid flow

    Get PDF
    Autophagy is a conserved molecular pathway directly involved in the degradation and recycling of intracellular components. Autophagy is associated with a response to stress situations, such as nutrients deficit, chemical toxicity, mechanical stress or microbial host defense. We have recently shown that primary cilium-dependent autophagy is important to control kidney epithelial cell size in response to fluid flow induced shear stress. Here we show that the ciliary protein folliculin (FLCN) actively participates to the signaling cascade leading to the stimulation of fluid flow-dependent autophagy upstream of the cell size regulation in HK2 kidney epithelial cells. The knockdown of FLCN induces a shortening of the primary cilium, inhibits the activation of AMPK and the recruitment of the autophagy protein ATG16L1 at the primary cilium. Altogether, our results suggest that FLCN is essential in the dialog between autophagy and the primary cilium in epithelial cells to integrate shear stress-dependent signaling

    Myogenesis modelled by human pluripotent stem cells uncovers Duchenne muscular dystrophy phenotypes prior to skeletal muscle commitment

    Get PDF
    Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5,000 male births. Symptoms appear in early childhood, with a diagnosis made around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise - even asymptomatically - is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. In this study, we have used human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis, and compared their differentiation dynamics to healthy control cells by a comprehensive multi-omics analysis. Transcriptome and miRnome comparisons combined with protein analyses at 7 time points demonstrate that hiPSC differentiation 1) mimics described DMD phenotypes at the differentiation endpoint; and 2) homogeneously and robustly recapitulates key developmental steps - mesoderm, somite, skeletal muscle - which offers the possibility to explore dystrophin functions and find earlier disease biomarkers. Starting at the somite stage, mitochondrial gene dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of skeletal muscle cells that starts early during myogenesis. In sum, our data strongly argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin functions during muscle development

    Myogenesis modelled by human pluripotent stem cells uncovers Duchenne muscular dystrophy phenotypes prior to skeletal muscle commitment

    Get PDF
    Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5,000 male births. Symptoms appear in early childhood, with a diagnosis made around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise - even asymptomatically - is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. In this study, we have used human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis, and compared their differentiation dynamics to healthy control cells by a comprehensive multi-omics analysis. Transcriptome and miRnome comparisons combined with protein analyses at 7 time points demonstrate that hiPSC differentiation 1) mimics described DMD phenotypes at the differentiation endpoint; and 2) homogeneously and robustly recapitulates key developmental steps - mesoderm, somite, skeletal muscle - which offers the possibility to explore dystrophin functions and find earlier disease biomarkers. Starting at the somite stage, mitochondrial gene dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of skeletal muscle cells that starts early during myogenesis. In sum, our data strongly argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin functions during muscle development
    • …
    corecore