300 research outputs found

    Root to Kellerer

    Full text link
    We revisit Kellerer's Theorem, that is, we show that for a family of real probability distributions (μt)t∈[0,1](\mu_t)_{t\in [0,1]} which increases in convex order there exists a Markov martingale (St)t∈[0,1](S_t)_{t\in[0,1]} s.t.\ St∼μtS_t\sim \mu_t. To establish the result, we observe that the set of martingale measures with given marginals carries a natural compact Polish topology. Based on a particular property of the martingale coupling associated to Root's embedding this allows for a relatively concise proof of Kellerer's theorem. We emphasize that many of our arguments are borrowed from Kellerer \cite{Ke72}, Lowther \cite{Lo07}, and Hirsch-Roynette-Profeta-Yor \cite{HiPr11,HiRo12}.Comment: 8 pages, 1 figur

    Adiabaticity Conditions for Volatility Smile in Black-Scholes Pricing Model

    Full text link
    Our derivation of the distribution function for future returns is based on the risk neutral approach which gives a functional dependence for the European call (put) option price, C(K), given the strike price, K, and the distribution function of the returns. We derive this distribution function using for C(K) a Black-Scholes (BS) expression with volatility in the form of a volatility smile. We show that this approach based on a volatility smile leads to relative minima for the distribution function ("bad" probabilities) never observed in real data and, in the worst cases, negative probabilities. We show that these undesirable effects can be eliminated by requiring "adiabatic" conditions on the volatility smile

    Local time and the pricing of time-dependent barrier options

    Full text link
    A time-dependent double-barrier option is a derivative security that delivers the terminal value ϕ(ST)\phi(S_T) at expiry TT if neither of the continuous time-dependent barriers b_\pm:[0,T]\to \RR_+ have been hit during the time interval [0,T][0,T]. Using a probabilistic approach we obtain a decomposition of the barrier option price into the corresponding European option price minus the barrier premium for a wide class of payoff functions ϕ\phi, barrier functions b±b_\pm and linear diffusions (St)t∈[0,T](S_t)_{t\in[0,T]}. We show that the barrier premium can be expressed as a sum of integrals along the barriers b±b_\pm of the option's deltas \Delta_\pm:[0,T]\to\RR at the barriers and that the pair of functions (Δ+,Δ−)(\Delta_+,\Delta_-) solves a system of Volterra integral equations of the first kind. We find a semi-analytic solution for this system in the case of constant double barriers and briefly discus a numerical algorithm for the time-dependent case.Comment: 32 pages, to appear in Finance and Stochastic

    On the Heston Model with Stochastic Interest Rates

    Full text link

    Analogy making and the structure of implied volatility skew

    Get PDF
    An analogy based option pricing model is put forward. If option prices are determined in accordance with the analogy model, and the Black Scholes model is used to back-out implied volatility, then the implied volatility skew arises, which flattens as time to expiry increases. The analogy based stochastic volatility and the analogy based jump diffusion models are also put forward. The analogy based stochastic volatility model generates the skew even when there is no correlation between the stock price and volatility processes, whereas, the analogy based jump diffusion model does not require asymmetric jumps for generating the skew
    • …
    corecore