2 research outputs found

    Flagellin is a strong vaginal adjuvant of a therapeutic vaccine for genital cancer

    Get PDF
    Cervical cancer is a high-incidence female cancer most commonly caused by human papilloma virus (HPV) infection of the genital mucosa. Immunotherapy targeting HPV-derived tumor antigens (TAs) has been widely studied in animal models and in patients. Because the female genital tract is a portal for the entry of HPV and a highly compartmentalized system, the development of topical vaginal immunotherapy in an orthotopic cancer model would provide an ideal therapeutic. Thus, we examined whether flagellin, a potent mucosal immunomodulator, could be used as an adjuvant for a topical therapeutic vaccine for female genital cancer. Intravaginal (IVAG) co-administration of the E6/E7 peptides with flagellin resulted in tumor suppression and long-term survival of tumor-bearing mice. In contrast to IVAG vaccination, intranasal (IN) or subcutaneous (SC) immunization did not induce significant tumor suppression in the same model. The vaginal adjuvant effect of the flagellin was completely abolished in Toll-like receptor-5 (TLR5) knock-out mice. IVAG immunization with the E6/E7 peptides plus flagellin induced the accumulation of CD4(+) and CD8(+) cells and the expression of T cell activation-related genes in the draining genital lymph nodes (gLNs). The co-administered flagellin elicited antigen-specific IFN gamma production in the gLNs and spleen. The intravaginally administered flagellin was found in association with CD11c(+) cells in the gLNs. Moreover, after immunization with a flagellin and the E6/E7 peptides, the TLR5 expression in gLN cells was significantly upregulated. These results suggest that flagellin serves as a potent vaginal adjuvant for a therapeutic peptide cancer vaccine through the activation of TLR5 signaling.1166sciescopu

    Drug-resistant Aspergillus flavus is highly prevalent in the environment of Vietnam: a new challenge for the management of Aspergillosis?

    No full text
    The burden of aspergillosis, especially Chronic Pulmonary Aspergillosis, is increasingly recognized, and the increasing presence of azole-resistant environmental Aspergillus fumigatus has been highlighted as a health risk. However, a sizable minority of aspergillosis is caused by Aspergillus flavus, which is assumed to be sensitive to azoles but is infrequently included in surveillance. We conducted environmental sampling at 150 locations in a rural province of southern Vietnam. A. flavus isolates were identified morphologically, their identity was confirmed by sequencing of the beta-tubulin gene, and then they were tested for susceptibility to azoles and amphotericin B according to EUCAST methodologies. We found that over 85% of A. flavus isolates were resistant to at least one azole, and half of them were resistant to itraconazole. This unexpectedly high prevalence of resistance demands further investigation to determine whether it is linked to agricultural azole use, as has been described for A. fumigatus. Clinical correlation is required, so that guidelines can be adjusted to take this information into account
    corecore