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ABSTRACT
Cervical cancer is a high-incidence female cancer most commonly caused by human papilloma virus (HPV)
infection of the genital mucosa. Immunotherapy targeting HPV-derived tumor antigens (TAs) has been
widely studied in animal models and in patients. Because the female genital tract is a portal for the entry
of HPV and a highly compartmentalized system, the development of topical vaginal immunotherapy in an
orthotopic cancer model would provide an ideal therapeutic. Thus, we examined whether flagellin, a
potent mucosal immunomodulator, could be used as an adjuvant for a topical therapeutic vaccine for
female genital cancer. Intravaginal (IVAG) co-administration of the E6/E7 peptides with flagellin resulted in
tumor suppression and long-term survival of tumor-bearing mice. In contrast to IVAG vaccination,
intranasal (IN) or subcutaneous (SC) immunization did not induce significant tumor suppression in the
same model. The vaginal adjuvant effect of the flagellin was completely abolished in Toll-like receptor-5
(TLR5) knock-out mice. IVAG immunization with the E6/E7 peptides plus flagellin induced the
accumulation of CD4C and CD8C cells and the expression of T cell activation-related genes in the draining
genital lymph nodes (gLNs). The co-administered flagellin elicited antigen-specific IFNg production in the
gLNs and spleen. The intravaginally administered flagellin was found in association with CD11cC cells in
the gLNs. Moreover, after immunization with a flagellin and the E6/E7 peptides, the TLR5 expression in
gLN cells was significantly upregulated. These results suggest that flagellin serves as a potent vaginal
adjuvant for a therapeutic peptide cancer vaccine through the activation of TLR5 signaling.

Abbreviations: Ag, antigen; ANOVA, analysis of variance; APC, antigen presenting cell; CIN, cervical intraepithelial
neoplasia; ELISPOT, enzyme-linked immunospot; gLN, genital lymph node; HPV, human papillomavirus; IFNg , inter-
feron gamma; IN, intranasal; IP, intraperitoneal; IVAG, Intravaginal; KO, knockout; N9, nonxynol-9; PBS, phosphate
buffered saline; PRR, pattern recognition receptor; qRT-PCR, quantitative reverse transcription polymerase chain
reaction; SC, subcutaneous; TA, tumor antigen; TLR, Toll-like receptor; WT, wild type

KEYWORDS
Flagellin; human papil-
loma virus; peptide; ther-
apeutic vaccine; vaginal
adjuvant

Introduction

Cervical cancer, the fourth leading cause of death among
female cancers, is most commonly caused by high-risk human
papillomavirus (HPV) infection.1,2 Following HPV infection, a
series of phenotypic changes gradually develop from precancer-
ous lesions called cervical intraepithelial neoplasia (CIN),
graded 1–3 (CIN I-III) to invasive cervical cancer.3 Immuno-
therapy targeting the E6 and E7 (E6/E7) oncogenes of high-risk
HPV type 16 (HPV-16) has been developed for the treatment
of CIN and cancers.4,5

The female genital tract is a highly compartmentalized
mucosal system that serves as an entry point for HPV.6,7 The
tumor microenvironment is generally immunosuppressive, pre-
venting an immune response to TAs.6-11 Therefore, for the suc-
cessful clinical application of immunotherapy in cervical cancer
or high-grade CIN, a topical immunization that can overcome

immune tolerance and induce site-specific, local antitumor
immune responses in the genital system is necessary.6,7,12-14

Ligands for pattern-recognition receptors (PRRs) have been
actively evaluated as adjuvants for a wide spectrum of vaccines
and immunotherapeutics.15-17 We previously reported that a
bacterial flagellin, which is an agonist of TLR5,18,19 is an excel-
lent adjuvant for various vaccines.17,20-24 It has been reported
that not all TLRs are expressed in the female genital tract and
that TLR5/TLR12 and TLR1/TLR2/TLR5/TLR13 are expressed
in the uterus and vagina, respectively.25 The expression of
TLR5 in the genital tissue in particular is much higher than
that of other TLRs, regardless of the estrous cycle.25 As a thera-
peutic cancer vaccine regimen, whole tumor cell- or protein/
peptide-antigens (Ags) have been suggested. Among these, the
Ag-associated peptide vaccine can bypass Ag-processing and
directly bind to MHC molecules on Ag-presenting cells (APCs)
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to interact with cognate T cells.26,27 We have previously shown
that flagellin enhanced tumor-specific CD8C T cell immune
responses in a therapeutic cancer vaccine model.24 Given that
the co-administration of flagellin with TA induced antitumor
effects in a SC tumor implantation model, we hypothesized
that flagellin could be used as a vaginal adjuvant for a pep-
tide-based therapeutic anticancer vaccine in an orthotopic
genital cancer model. It has been reported that IVAG admin-
istration of TLR3, 7, or 9 agonists enhances Ag-specific
immune responses elicited by systemic immunization.13,28 In
the present study, we examined whether flagellin, which is a
potent mucosal immunomodulator, could be used as an adju-
vant for a topical therapeutic cancer vaccine in a genital can-
cer model.

To trace in vivo tumor growth using non-invasive imag-
ing technology, we implanted TC-1 cells expressing lucifer-
ase (TC-1-luc cells) in the female genitalia of mice, as
previously described.29 Diestrus mice were co-administered
topically with the E6/E7 peptides with or without flagellin.
We showed that IVAG immunization with the E6/E7 pepti-
des in combination with Vv-FlaB, a Vibrio vulnificus flagel-
lin, suppressed tumor growth, leading to significantly longer
survival of the tumor-bearing mice. In contrast to the
IVAG vaccination, IN or SC administration did not induce
significant tumor suppression in our orthotopic cancer
model. Here, we propose that flagellin is a promising topical

vaginal adjuvant for the enhancement of TA-specific antitu-
mor immune responses in genital cancer or high-grade CIN
(CIN II/III).

Results

IVAG immunization, and not IN or SC immunization, with
the E6/E7 peptides plus flagellin suppresses tumor growth
and promotes the long-term survival of tumor-bearing
mice in a genital cancer model

To evaluate the efficacy of the flagellin-adjuvanted therapeu-
tic cancer vaccine, we established an orthotopic genital can-
cer model by IVAG implantation of 1£105 TC-1-luc cells in
C57BL/6 mice, as previously described.12,30 The tumor-bear-
ing mice underwent IVAG, IN or SC immunization with
phosphate-buffered saline (PBS) or the E6/E7 peptides plus
Vv-FlaB (PCF) at days 3, 8 and 13 after TC-1-luc cell
implantation, and tumor growth was monitored by biolumi-
nescence detection (Fig. 1A). To enhance the transepithelial
uptake of the E6/E7 peptides and Vv-FlaB, the TC-1-luc cell-
implanted diestrus mice were treated with N9, as previously
described.13,31 As shown in Fig. 1B and C, only the tumor-
bearing mice with the IVAG immunization showed tumor
suppression and long-term survival. In contrast to IVAG
vaccination, IN or SC vaccination with PCF did not manifest

Figure 1. IVAG immunization, but not intranasal (IN) or SC immunization, with the E6/E7 peptides and flagellin suppresses tumor growth, leading to long-term survival in
a genital cancer model. (A) Groups of C57BL/6 mice were pretreated with 3mg/mouse medroxyprogesterone (day -4) and N9 (day 0) and then the 1£105 TC-1-luc cells
were intravaginally administered to the mice to induce tumor formation. The mice then underwent IVAG, IN or SC immunization with a mixture of 4 mg Vv-FlaB and
50 mg each E6 and E7 on days 3, 8 and 13, as described in the Materials and Methods section. Bioluminescence imaging was performed on day 7 or day 13. The imaging
signals were collected using a cooled charge-coupled camera device, and signal intensities were assessed quantitatively in the tumor regions by measuring the maximum
photons per second per centimeter squared per steradian (p/s/cm2/sr), followed by plotting as a function of time after the TC-1-luc challenge (B). The long-term survival
of the tumor-bearing mice is shown in (C). (***indicates p < 0.001).
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any antitumor effect compared with the PBS vaccination in
this genital cancer model (p > 0.05). The E6/E7-specific
IFNg spots were detected only in the IVAG group (Fig. S1).
This result suggests that flagellin can be a promising topical
vaginal adjuvant for inducing strong antitumor immune
responses in genital tissues. In this context, IVAG immuni-
zation was selected for further mechanistic investigation.

The antitumor effect induced by the co-administration of
the E6/E7 peptides plus flagellin is abolished in TLR5
knockout mice

To determine whether the antitumor effect was mediated by the
modulation of an Ag-specific immunity and whether the adju-
vant effect was TLR5-dependent, wild-type (WT) or TLR5
knockout (KO) C57BL/6 mice were immunized with PBS
(PBS), Vv-FlaB (F), the E6/E7 peptides (P) or the E6/E7 pepti-
des plus Vv-FlaB (PCF). The in vivo tumor growth and the sur-
vival of the immunized mice were then assessed. The
bioluminescence signal increased to 2.21£107 § 4.96£106 p/s/
cm2/sr in the PBS-treated control group (PBS) at 19 d after
tumor cell implantation and that in the E6/E7 peptide-treated
group (P) was 7.30£106 § 3.68£106 p/s/cm2/sr in the WT
mice (Fig. 2A). Notably, the co-administration group (PCF)
showed significant inhibition of tumor growth (2.07£105 §
1.67£105 p/s/cm2/sr) compared with the p group (p < 0.001)
(Fig. 2A). Additionally, the Vv-FlaB-treated mice (F) showed
tumor volumes (1.34£107 § 6.49£106 p/s/cm2/sr) that were
comparable to those of the PBS-treated control group (p >

0.05) (Fig. 2A). These results indicate that Vv-FlaB itself does
not suppress TC-1 cell growth in vivo and potentiates the E6/
E7-specific host immune response to suppress tumor growth in
the present orthotopic therapeutic cancer vaccine model.

We also evaluated the long-term survival of the vaccinated
WT mice (Fig. 2A). Eighty days after the TC-1-luc cell chal-
lenge in WT mice, the cumulative survival rate in the PCF
group (n D 7) was 43%. The survival rates in other groups
(PBS, F and P) were all 0%. The PCF group survival was signifi-
cantly prolonged compared to that of the p group (p < 0.05)
(Fig. 2A). To determine whether the antitumor effect induced
by IVAG E6/E7 plus flagellin was mainly mediated by host
TLR5 signaling, we assessed the tumor growth and survival of
the tumor-bearing TLR5 KO mice. As shown in Figure 2B, the
E6/E7 peptides plus the flagellin-mediated antitumor effect was
almost completely abolished in the TLR5 KO mice. Although
the kinetics of tumor growth were delayed until day 13 in the
TLR5 KO mice (p < 0.05, ANOVA), the end-point tumor bur-
den in the KO mice at day 19 was comparable to that observed
in the WT mice. Moreover, all of the groups of KO mice (PBS,
P, F or PCF) died within 27 d (Fig. 2B). These results clearly
indicate that the antitumor effect induced by IVAG E6/E7 co-
administered with flagellin was dominated by the TLR5 signal-
ing in the host.

IVAG immunization with the E6/E7 peptides plus flagellin
induces E6/E7-specific IFNg production in the gLNs

To determine whether IVAG vaccination with flagellin and
the E6/E7 peptides could induce antitumor immune
responses in the genital and systemic immune systems, we

Figure 2. The antitumor effect induced by co-administration of the E6/E7 pepti-
des with flagellin is TLR5 dependent. Groups of WT (A) and TLR5 KO (B) C57BL/6
mice were pretreated with 3mg/mouse medroxyprogesterone and N9 as
described in the Materials and Methods section and then the 1£105 TC-1-luc
cells were intravaginally administered to the mice to induce tumor formation.
The mice then underwent IVAG immunization with PBS (PBS), 4 mg Vv-FlaB (F),
50 mg each E6 and E7 (P), or a mixture of 4 mg Vv-FlaB with 50 mg each E6 and
E7 (PCF) on days 3, 8 and 13, as described in the Materials and Methods section.
Bioluminescence imaging was performed four times in WT and TL-5 KO C57BL/6
mice, the imaging signals were collected using a cooled charge-coupled camera
device, and signal intensities were assessed quantitatively in the tumor regions
by measuring the maximum photons per second per centimeter squared per
steradian (p/s/cm2/sr), followed by plotting as a function of time after the TC-1-
luc challenge. The difference in tumor growth between the PCF and the p
experimental groups was statistically significant (***indicates p < 0.001). Groups
of vaccinated mice (n D 5–7) were monitored for survival. Representative results
from one of three independent experiments are shown. The survival curve was
constructed according to the Kaplan–Meier method, and the statistical signifi-
cance was determined by the log-rank test. The difference in survival between
the PCF and the p experimental groups was statistically significant (* indicates p
< 0.05 on day 19).
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Figure 3. IVAG immunization with the E6/E7 peptides and flagellin induces E6/E7-specific IFNg production in the gLNs. Groups of C57BL/6 mice (WT) and TLR5 KO mice
were pretreated with 3mg/mouse medroxyprogesterone and N9 as described in the Materials and Methods section. The mice were intravaginally immunized with PBS
(PBS), 4 mg Vv-FlaB (F), 50 mg each E6 and E7 (P) or 4 mg Vv-FlaB along with 50 mg each E6 and E7 (PCF) 3 times at 5-d intervals. The mice were euthanized 3 d after
the last vaccination (A). The genital iliac lymph nodes (B) and splenocytes (C) were then prepared to evaluate E6/E7-specific IFNg production. The immune cells were stim-
ulated in vitro with the E6/E7 peptides (1 mg/mL each) for 3 d The number of E6/E7 peptide-specific IFNg-producing cells generated in vaccinated mice was determined
by group by ELISPOT assay. The genital iliac lymph nodes were also prepared to evaluate the mRNA expression of immune-related genes. Total RNA was isolated from
the gLNs of C57BL/6 mice and mRNA expression levels were measured by qRT-PCR for the indicated genes (D). The bar charts show representative data, consisting of the
mean § SEM from three individual experiments. * indicates p < 0.05, ** indicates p < 0.01 and *** indicates p < 0.001.
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measured the number of E6/E7-specific, IFNg-producing
cells among gLN cells and splenic mononuclear cells (SPL)
by the ELISPOT assay. To facilitate the transepithelial
uptake of the E6/E7 peptides plus flagellin, diestrus-synchro-
nized mice were administered N9 during the first IVAG vac-
cination (Fig. 3A). As shown in Figure 3B, the number of
E6/E7-specific IFNg spots in the PCF group was signifi-
cantly higher than that in the p group (p < 0.01). Among
the SPL, a significant number of E6/E7-specific IFNg spots
were detected only in the PCF group (PCF: 19.00 § 4.79)
(Fig. 3C). The E6/E7-specific IFNg spots were not detected
in the PCF group of TLR5 KO mice. This result shows that
the IVAG PCF vaccination induced effective Ag-specific
antitumor immune responses in both local and systemic
compartments in a TLR5-dependent manner.

IVAG immunization with the E6/E7 peptides plus flagellin
induces immune cell activation in the gLNs

To evaluate the immune modulation in the gLNs induced by
IVAG immunization with PCF, we determined the mRNA
expression levels of genes related to T cell activation.28,32,33 The
group of mice that was intravaginally immunized with the E6/
E7 peptides plus flagellin (PCF) displayed significantly
increased expression levels of the CXCR3, CCR5, CCR9,
CCR10 and VLA-4 genes compared with the PBS group (p <

0.001; Fig. 3D). In contrast, the group immunized with the E6/

E7 peptides alone (P group) did not exhibit enhanced CCR5,
CCR9, CCR10 or VLA-4 expression but did show an increase
in CXCR3. Although the E6/E7 peptides alone (P group)
enhanced CXCR3 expression (p < 0.001), the gene expression
was higher (p < 0.001) in the PCF group compared with the
p group. In addition, IVAG administration of flagellin alone
induced significantly higher expressions of the CXCR3, CCR5,
CCR9, and VLA-4 genes. However, the expression levels of the
CXCR3, CCR5, CCR9, CCR10 and VLA-4 genes in the PCF
group were significantly higher than those in the F group
(p < 0.01 or p < 0.005, respectively). This result indicates that
TA or flagellin alone does not activate a sufficient immune
response in draining LNs to induce tumor suppression and that
co-administered flagellin along with TAs induces significant
immunomodulation to induce local antitumor immune
responses.

To determine the changes in the T cell population in the
gLNs, we measured CD4C and CD8C cells in the gLNs by
flow cytometry. The percentage of the cell population
expressing CD8C (p < 0.001) or CD4C (p < 0.05) signifi-
cantly increased in the PCF group compared with the p
group. In contrast, the group that received flagellin alone
(F) showed no increase in the CD4C or CD8C cell popula-
tion compared with the PBS group (Fig. 4). These results
suggest that only the IVAG co-administration of TAs and
flagellin can induce efficacious T cell immune responses in
the draining LNs.

Figure 4. IVAG immunization with the E6/E7 peptides and flagellin induces immune cell activation in gLNs. (A) Groups of C57BL/6 mice were pretreated with 3mg/mouse
medroxyprogesterone and N9 as described in the Materials and Methods section. The mice were intravaginally immunized with PBS (PBS) or 4 mg Vv-FlaB along with
50 mg each E6 and E7 (PCF) Three days after administration, the CD8C (B) and CD4C (C) cell populations in gLNs were measured by flow cytometry.
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Intravaginally administered flagellin and peptide employ
CD11cC cells in the vagina and gLNs for their effects

To better understand the possible mechanisms underlying
the effects of IVAG-administered flagellin in vivo, Vv-FlaB
conjugated with FNR-675 (Vv-FlaB-FNR 675) was adminis-
tered into N9-treated diestrus mice, and the interaction of
Vv-FlaB-FNR 675 with the specific cell population was
assessed by flow cytometry and confocal microscopy.
Within one hour of Vv-FlaB-FNR 675 administration, we
observed a clustering of CD11cC cells in the luminal side
epithelium of the vaginal canal that tended to co-localize
with the administered Vv-FlaB-FNR 675 (Fig. S2–S4). Inter-
estingly no such clustering of the CD11cC cell population
was observed in the PBS-administered group (Figs. S2–S5).
Four to five hours after immunization, intravaginally
administered Vv-FlaB-FNR675 was detected on CD11cC

cells (Fig. 5A and B). To locate the whereabouts of Vv-
FlaBCCDllcC cells in the gLN, we stained the cells in

successive sections with CD11c and CD3 antibodies at the
4th h after administration. We observed that Vv-
FlaBCCDllcC cells located in the T cell areas of gLNs
(Fig. 5C). By the 4th h post-flagellin plus E6/E7 peptide
administration, CD11cC cell numbers increased in the gLNs
(Fig. 6). Taken together, these results show that intravagi-
nally administered flagellin directly interacts with immune
cells (mostly antigen-presenting cells) in situ in the vagina
as well as in draining gLNs and, consequently, modulates
the antigen-specific immune response.

IVAG immunization with the E6/E7 peptides plus flagellin
induces TLR5 expression in the gLNs and the vagina

To decipher the reason for the notable immune responses
in the PCF group post-vaccination, we measured the TLR5
gene expression levels in gLNs as well as in the vagina. The
TLR5 expression was significantly enhanced upon flagellin

Figure 5. Intravaginally administered flagellin interacts with CD11cC cells in the gLNs. Groups of C57BL/6 mice were pretreated with 3mg/mouse medroxyprogesterone
and N9 as described in the Materials and Methods section. The mice were intravaginally administered 14 mg Vv-FlaB-FNR 675. One, three and five h after administration,
the gLNs-cells were prepared to determine the localization of the Vv-FlaB-FNR 675 in the gLNs by flow cytometry (A). The genital iliac lymph nodes were also prepared
for confocal microscopic observation 4 h after administration (B, C).

e1081328-6 S. E. LEE ET AL.



plus E6/E7 peptides immunization in gLNs (Fig. 7A), which
was confined to CD11cC cells (Fig. 7B; Fig. 7C-2, white
arrow). Non-CD11cC cells also expressed TLR5 (Fig. 7C-2,
red arrow). In the vaginal tissue, we also observed a marked
increase in the TLR5 expression (Fig. S3A), especially in
CD11cC cells (Fig. S3B-S2 white arrow). The TLR5 expres-
sion on non-CD11cC cells was observed in PBS-adminis-
tered vaginal mucosa (Fig. S3B-S1, red arrow). This result
suggests that IVAG vaccination with the E6/E7 peptides
with flagellin upregulates TLR5-signaling cells in draining

LNs, which presumably further augmented the adjuvant
effect of flagellin.

Discussion

We demonstrated that IVAG immunization with peptide-based
TA in combination with flagellin induces orthotopic tumor
suppression and long-term survival of tumor-bearing mice in a
TLR5-dependent manner. The flagellin-mediated vaginal adju-
vant effect was not observed for IN or SC immunization in the

Figure 7. IVAG immunization with the E6/E7 peptides and flagellin induces TLR5 expression in the gLNs. (A) Groups of C57BL/6 mice were pretreated with 3mg/mouse
medroxyprogesterone and N9 as described in the Materials and Methods section. The mice were intravaginally immunized with PBS (PBS), 4 mg Vv-FlaB (F), 50 mg each
E6 and E7 (P) or 4 mg Vv-FlaB along with 50 mg each E6 and E7 (PCF) 3 times at 5-d intervals. The mice were euthanized 3 d after the last vaccination. The genital iliac
lymph nodes were then prepared to determine the mRNA expression of immune-related genes. Total RNA was isolated from the gLNs and mRNA expression levels were
measured by qRT-PCR for the indicated genes. (B) Groups of C57BL/6 mice were intravaginally immunized with PBS (PBS) or 4 mg Vv-FlaB along with 50 mg each E6 and
E7 (PCF). Three days after immunization, single-cell suspensions of gLN cells were prepared and TLR5 expression on the CD11cC cells in the gLN was measured by flow
cytometry. (C) Groups of C57BL/6 mice were intravaginally immunized with PBS (PBS) or 4 mg Vv-FlaB along with 50 mg each E6 and E7 (PCF). Four hours after immuniza-
tion, TLR5 expression was determined by confocal microscopy. *** indicates p < 0.001.

Figure 6. Intravaginally administered flagellin interacts with CD11cC cells in the gLNs. Groups of N9-treated diestrus C57BL/6 mice as described in the Materials and
Methods section were intravaginally administered with 4 mg Vv-FlaB along with 50 mg each E6 and E7. The mice were euthanized one, 2 and 4 h after administration
(panel 1 at 1hr; panel 2 at 2 hr; panels 3 and 4 at 4 hr) and the genital iliac lymph nodes were prepared to observe CD11cC and CD3C cells in the gLNs by confocal
microscopy.
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same orthotopic cancer model. Intravaginally administered sol-
uble peptides and flagellin directly interacted with CD11cC cells
in the gLNs, leading to an increase in CD4C and CD8C cell
accumulation in the gLNs. Furthermore, IVAG co-administra-
tion of the E6/E7 peptides with flagellin was sufficient to
enhance T cell activation-related gene expression and E6/E7-
specific IFNg production in the gLNs.

The female genital tract is an entry point for HPV, the
major etiologic agent of CIN and cervical cancer. A topical
cancer vaccine for CIN or cervical cancer that induce site-
specific and Ag-specific immune responses could be a useful
approach in clinical applications. It is well-known that the
anatomical site determines the microenvironments of
implanted tumor cells and exerts a strong influence on the
response to tumor immunotherapy.10,34 In the present
study, we evaluated whether flagellin can be a useful vaginal
adjuvant for therapeutic cervical cancer vaccines using an
orthotopic genital cancer model, with the goal of developing
a topical cancer vaccine system. We found that IVAG co-
administration of flagellin with the E6/E7 peptides strongly
induced site-specific immune responses against TAs. As
shown in Figure 2, the strong vaginal adjuvant effect of fla-
gellin was completely abolished in TLR5 KO mice. How-
ever, in TLR5 KO mice, the in vivo growth of implanted
TC-1-luc cells was somewhat delayed by the PCF immuni-
zation (Fig. 2B; p < 0.05, ANOVA), suggesting the involve-
ment of other PRR systems that can recognize flagellin,
such as the NLRC4 inflammasome pathway.35 However, the
tumor burden in the KO mice at day 19 was comparable to
that observed in WT mice. Additionally, the PCF (E6/E7
peptides with flagellin) group of KO mice died within 27 d,
whereas in WT mice, the survival rate at day 80 was 43%.
These results clearly indicate that the TLR5 signaling path-
way played a dominant role in the tumor suppression
induced by the IVAG E6/E7 peptides plus flagellin vaccina-
tion. The usefulness of flagellin as a topical adjuvant for
therapeutic vaccines for CIN and cervical cancer should be
noted by the preferential expression of TLR5 in vaginal tis-
sue.25 and the further induction of TLR5 in local tissue and
draining LNs after topical treatment (Fig. 7).

In the present study, we used an orthotopic genital can-
cer model based on TC-1-luc cell implantation in N9-
treated diestrus synchronized mice, as previously
described.12,13 Compared with the SC implantation model,
tumor progression was far more robust in the orthotopic
model. For example, when 1£105 TC-1-luc cells or 5£105

TC-1 cells were implanted in the cervical genital tissues or
the dorsal area, survival rates were comparable in the ortho-
topic and SC groups (Fig. 1 and Fig. 2).24 Because the in
vivo tumor growths of TC-1 and TC-1-luc cells were not
significantly different (data not shown), these results suggest
that the genital tissue provides more a favorable microenvi-
ronment for the growth of TC-1 tumor cells. Despite more
rapid tumorigenesis in the orthotopic genital cancer model,
the IVAG vaccination with E6/E7 peptides plus flagellin
potently suppressed tumor growth in genital tissue, leading
to long-term survival of the tumor-bearing mice in this
model (Figs. 1 and 2). Surprisingly, IN or SC immunization
did not show in vivo tumor suppression in the same

orthotopic genital cancer model (Fig. 1). In a previous
report, we showed that IN immunization using flagellin and
E6/E7 peptides in na€ıve mice induced E6/E7 peptide-specific
IFNg production in draining cervical lymph nodes (cLNs).23

In this study, we determined the E6/E7 peptide-specific
IFNg production only in the draining gLNs (not in cervical
LNs) since we wanted to observe local immune responses
that would more closely reflect antitumor activities in the
genital cancer. Notably, IN immunization using E6/E7 pep-
tides and flagellin was not sufficient to induce significant
antitumor responses against the genital cancer (Fig. 1),
while being able to induce Ag-specific IFNg production in
draining cLNs. Generally, intranasally immunized antigens
induce paralleled secretory antibody responses both in the
airway and in genital tracts.20,22 However, in the case of
antitumor cellular immune responses, IN immunization
may not necessarily induce resonant reactions in the genital
tissue. These results suggest that flagellin is a strong vaginal
(topical) adjuvant for the induction of site-specific antitu-
mor immune responses. Peptide-based anticancer vaccines
have been proposed and pursued by many groups because
of their advantages in terms of safety, ease of production
and stability.24,36-39 We also traced the movement of E6-
FITC conjugates post-IVAG administration. The intravagi-
nally administered E6-FITC could be detected in gLNs by
FACS analysis. E6-FITC started to appear in the gLNs
within the 1st h of its administration and remained co-
localized with CD11cC DC for extended periods (data not
shown). Our data indicate that flagellin acts with minimal
antigenic peptides (E6/E7, 8–9 amino acids) to activate a
potent antitumor immune response. IVAG vaccination with
a therapeutic peptide cancer vaccine in an orthotopic geni-
tal tumor would provide pharmacokinetic advantages, cir-
cumventing limitations in systemic administration by
directly accessing target sites,10 and also by providing a
dose-sparing effect.

It is believed that there are no organized mucosal-associ-
ated inductive sites in the genital tubes of na€ıve mice.40 Our
data showed that administered soluble flagellin interacted
with CD11cC cells in vaginal mucosa and the gLNs (Fig. 5
and Fig. S2) Given that CXCR3, CCR5, CCR9, CCR10 and
VLA-4 were highly expressed on effector T lympho-
cytes,33,41-43 our results clearly indicate that IVAG immuni-
zation with the E6/E7 peptides and flagellin could induce
site-specific cellular immune responses. Although the flagel-
lin-treated mice showed elevated expressions of T cell acti-
vation-related genes (CXCR3, CCR5, CCR9, and VLA-4),
only the PCF group displayed Ag-specific IFNg production.
This result indicates that co-administration of the E6/E7
peptides and flagellin synergistically potentiated antitumor
immune responses that should have been basally primed by
the tumor by itself. Stimulation of the basally primed local
immune system by only the peptide antigen was not suffi-
cient to induce a therapeutic-level immune response. The
advantage of the PCF vaccination would be additional stim-
ulation of innate immune cells interacting with Ag-specific
T cells and self-amplification of TLR5 signaling by further
inducing TLR5 expression in local tissues. Under our in
vivo experimental condition, the enhanced TLR5 expression
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could be due to either upregulation of the TLR5 or recruit-
ment of TLR5-expressing cells to the gLNs. In our previous
study of IN vaccination, we observed that flagellin treat-
ment increased the number of TLR5C CD11cC DCs in the
cLNs. Interestingly, each TLR5-positive cell showed a signif-
icantly higher expression level.20 To address the underlying
mechanism, further study will be needed.

Our data suggest that administration of a flagellin-adju-
vanted peptide vaccine as a topical therapeutic vaccine could
induce regression of established genital cancer. However, sys-
temic or IN vaccination of flagellin and peptides did not show
tumor suppression. Though we did not test a systemic vaccina-
tion followed by IVAG administration of adjuvants as previ-
ously reported,13,28 we clearly showed that co-administration of
flagellin and peptides effectively induces T cell immune
responses in the draining lymph nodes, leading to tumor
regression in responding lesions. Because a significant amount
of flagellin was detected in the gLNs within 4 to 5 h of IVAG
administration (Fig. 5), topical vaccination represents a prom-
ising approach for a therapeutic vaccine for CIN and cervical
cancer.

For IVAG administration, the mice were pretreated with
Sayana (medroxyprogesterone) and N9 as previously
described.13,31 It is believed that this pretreatment enhances
the transepithelial uptake of peptides and flagellin and
accelerates immune responses in the gLNs. Generally, the
barrier is disturbed in genital tumor-bearing mice. There-
fore, it is probable that vaccine uptake and subsequent
access to the draining lymph nodes are facilitated in tumor-
bearing mice. Therefore, IVAG co-administration of the
appropriate Ag with the vaginal adjuvant flagellin can elicit
optimal site-specific immune responses, inducing tumor
suppression in the genital compartment. Pettini et al
showed that vaginal immunization can induce Ag-loaded
dendritic cells within the draining lymph nodes and can
recruit T cells.40 Cuburu et al also reported that IVAG
immunization induces tissue-resident CD8C T cell
responses.31 This report supports the conclusion that IVAG
vaccination is sufficient to induce immune responses in the
genital compartment. Furthermore, tertiary lymphoid struc-
tures (TLSs) with the capacity to expand protective immune
responses have been widely noted in chronic inflammatory
settings (paper submitted).44 It has also been reported that
a therapeutic vaccination targeting HPV-16 induces T cell
responses that localize in mucosal lesions in humans.45

Taken together, these results suggest that IVAG adminis-
tration is a promising alternative route for vaccination for
CIN or cervical cancer and that flagellin, a TLR5 ligand,
could be an optimal vaginal adjuvant candidate. To achieve
the maximal immunotherapeutic efficacy of the flagellin-
adjuvanted peptide vaccine, combination therapy with
checkpoint targeting mAbs such as anti-CTLA-4 and/or
anti-PD-1,46 could be applicable. Because the development
of cervical cancer from high-grade precancerous lesions
(CIN II/CIN III) into invasive cancer occurs over a long
period of time, HPV-specific immunotherapy in the CIN II
or CIN III period could present the opportunity to prevent
invasive tumor development. In the present study, we pro-
pose consideration of the therapeutic application of flagellin

as a vaginal adjuvant for peptide vaccines in immunother-
apy for HPV-induced high-grade CIN (CIN II/III) or severe
cervical cancer.

Materials and methods

Cell line and mice

The TC-1-luc cell line, TC-1 transfected with a luciferase gene,
was used to trace orthotopic tumor growth.29 Six- to seven-
week-old female C57BL/6 mice were purchased from the Korea
Research Institute of Bioscience and Biotechnology (KRIBB,
Daejeon, Korea). TLR5¡/¡ knockout (KO) mice were bred in
our animal facility as described previously.24 All of the animal
experimental procedures were conducted in accordance with
the guidelines of the Animal Care and Use Committee of
Chonnam National University.

Peptides

The E6 (amino acids 50–57: YDFAFRDL) and E7 (amino acids
49–57: RAHYNIVTF) peptides from HPV-16 were synthesized
by AnyGen (Gwangju, Korea) with a purity of > 95% as previ-
ously described.24

Preparation of flagellin

Recombinant Vibrio vulnificus FlaB (Vv-FlaB) was prepared as
previously described.20,22 The LPS levels in the protein prepara-
tions adhered to the FDA guidelines (less than 0.15 EU/30 g
per mouse). The TLR5 stimulating activity of the recombinant
Vv-FlaB protein was determined as previously described.22

Orthotopic genital cancer model and determination
of tumor growth

Groups of 6- to 7-week-old female mice were treated with 3 mg
medroxyprogesterone acetate (Sayana�, Pfizer, RL1305) by SC
injection. Four days later, the diestrus-synchronized mice were
intravaginally administered 4% N9 (Sigma, I3021) under anes-
thesia (intraperitoneal (IP) injection of 100 mL of PBS contain-
ing 2 mg ketamine and 0.2 mg xylazine), as previously
described.13,31 After 6 h, the cervico-vaginal areas of the N9-
treated mice were washed with PBS. To establish an orthotopic
genital tumor model, 1£105 TC-1-luc cells were intravaginally
inoculated into the mice. Genital tumor growth was monitored
by bioluminescence 15 min after IP injection of D-luciferin
(Caliper Life Science, 122796) with the IVIS 100 (Caliper Life
Science, USA), as previously described.47,48 The imaging signals
were collected using a cooled charge-coupled camera device
and the signal intensities were assessed quantitatively in the
tumor regions by measuring the maximum photons per second
per centimeter squared per steradian (p/s/cm2/sr).

Immunization

For cancer immunotherapy in the orthotopic genital model, the
mice underwent IVAG administration of 25 mL PBS (PBS),
4 mg Vv-FlaB (F), 50 mg each E6/E7 (P) or 50 mg E6/E7 plus
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4 mg Vv-FlaB (PCF) at 3, 8 and 13 d after tumor challenge
under anesthesia (IP injection of 100 mL PBS containing 2 mg
ketamine and 0.2 mg xylazine) (Fig. 1A). For the SC and IN
vaccinations, 200 mL or 20 mL PBS alone or PBS containing
50 mg each E6/E7 along with 4 mg Vv-FlaB (PCF) was adminis-
tered under anesthesia (IP injection of 100 mL PBS containing
2 mg ketamine and 0.2 mg xylazine) at the in appropriate time
interval as described above.

E6/E7 peptides-specific IFNg production

The N9-treated diestrus-synchronized mice underwent IVAG
administration of 25 mL PBS (PBS), 4 mg Vv-FlaB (F), 50 mg
each E6/E7 (P) or 50 mg E6/E7 plus 4 mg Vv-FlaB (PCF) three
times at 5-d intervals. Three days after the last administration,
single-cell suspensions of SPL and genital iliac lymph nodes
were prepared. ELISPOT plates were pre-coated with capture
antibody (anti-IFNg, BD Biosciences, 51–2525). After 24 h, the
plates were washed and blocked for 2 h at room temperature.
SPL or gLN cells were added to a BD ELISPOT plate and then
stimulated with 1 mg/mL each of the E6 and E7 peptides. After
incubation for 3 d at 37 �C in 5% CO2, Ag-specific IFNg-pro-
ducing cells were identified by direct visualization of the spots
produced by the addition of AEC reagents (BD Biosciences,
55–1951). The spots were measured using a CTL-ImmunoSpot
Analyzer and analyzed with ImmunoSpot Professional Soft-
ware version 5.0 (Cellular Technology, Shaker Heights, OH,
USA).

Flow cytometry

The N9-treated diestrus-synchronized mice underwent IVAG
administration of 25 mL PBS (PBS), 4 mg Vv-FlaB (F), 50 mg
each E6/E7 (P) or 50 mg E6/E7 plus 4 mg Vv-FlaB (PCF). Three
days after administration, single-cell suspensions of gLN cells
were prepared. The isolated gLN cells were treated with Fc-
Block (2.4G2, BD Bioscience, 55–3142) and then stained with
the appropriate combinations of the following antibodies:
FITC-anti-CD8C (53_6.7, eBioscience, 55–3030); APC-anti-
CD4C (GK1.5, eBioscience, 17–0041); APC-anti-CD11c (N418,
eBioscience, 17–0114); FITC-anti-CD11c (HL3, eBioscience,
55–7400); PE-anti-CD80 (16–10A1, BD Bioscience); PE-anti-
86 (GC-1, BD Bioscience; PE-anti-MHC II (M5/114.15.2, BD
Bioscience); and PE-anti-TLR5 (85B152.5, IMGENEX). Flow
cytometry data were acquired using a BD Accuri C6 cytometer
(BD Biosciences) and analyzed with FlowJo software (Tree
Star, Ashland, OR).

Preparation of Vv-FlaB-FNR-675 and in vivo tracing

Vv-FlaB (24 mM in 1 mL 1£ PBS) was mixed with FNR675-
NHS ester (96 mM) (BioActs, Korea) at 4�C and maintained
overnight in the dark with stirring. The labeled Vv-FlaB-
FNR675 was then separated from the unconjugated dye using a
centrifugal filter (30 kDa cutoff) (Amicon Ultra� -4,
UFC801024), followed by washing (5£) in 1£PBS. Next, the
amount of FNR675 conjugated to the Vv-FlaB was determined
from the calibration curve of the FNR675-NHS ester using a
UV-Vis spectrophotometer (UV-2700, Shimadzu, Japan).

Percentage of FNR-675 conjugated to Vv-FlaB was determined
by comparing the initial amount of FNR-675-NHS ester added,
with the amount of FNR-675-NHS in the Vv-FlaB (determined
from the calibration curve of the FNR-675-NHS). The percent-
age of FNR-675 conjugated to Vv-FlaB was calculated as 85%.
The N9-treated diestrus-synchronized mice then underwent
IVAG administration of 20 mL PBS or 14 mg Vv-FlaB-FNR675.
gLN cells were prepared at the appropriate time points and
stained with FITC-anti-CD11c (HL3, eBioscience, 55–7400,) as
described above. Flow cytometry data were acquired using a
BD Accuri C6 cytometer (BD Biosciences) and analyzed with
FlowJo software (Tree Star, Ashland, OR).

Immunostaining and confocal imaging

Whole genital tissues and gLNs were removed at appropriate
time points after immunization, embedded in OCT compound
(Sakura Finetek, 4583) and snap frozen in liquid nitrogen. Sec-
tions of 5–7 mm were cut and stained with goat-anti-CD11c,
Rabbit-anti-CD3, or biotin-anti-TLR5 antibodies. The sections
were fixed in ice-cold acetone for 5 min, followed by rehydra-
tion in PBS and blocking in PBS containing 1% BSA and 0.05%
Tween20 for 1 h. Between each staining step, sections were
washed three times with PBS for 5 min.20 The sections were
counterstained with DAPI and then mounted with ProLong
Gold antifade reagent (Life Technologies, P36935). Confocal
images were obtained with an LSM510 confocal microscope.

Quantitative RT-PCR

The N9-treated diestrus-synchronized mice underwent IVAG
administration of 25 mL PBS (PBS), 4 mg Vv-FlaB (F), 50 mg
each E6 and E7 (P) or 50 mg each E6 and E7 plus 4 mg Vv-FlaB
(PCF) three times at 5-d intervals. Three days after the last
administration, total RNA was isolated from the genital iliac
lymph nodes using TRIzol reagent (Invitrogen, 15596–026)
and an RNeasy kit (Qiagen, 74104). The gene expression levels
of CXCR3, CCR5, CCR9, CCR10, VLA-4 and TLR5 in gLNs
were then analyzed by qRT-PCR analysis. The total RNA was
reverse transcribed using SuperScript� II Reverse Transcriptase
(Invitrogen, 11904–018) and an oligo-dT primer. Quantitative
PCR was performed using a Rotor-GeneTM 6000 (Corbett Life
Science, Mortlake, Sydney, Australia) with the SensiMix SYBR�

Table 1. Primers used in RT-PCR analysis.

Gene Primers Sequences

CXCR3 CXCR3-F 5’ – AACCTTCCTGCCAGCCCTCT – 3’
CXCR3-R 5’ – CGAAAACCCACTGGACAGCA – 3’

CCR5 CCR5-F 5’ – AGGCCATGCAGGCAACAG – 3’
CCR5-R 5’ – TCTCTCCAACAAAGGCATAGATGA – 3’

CCR9 CCR9-F 5’ – TCTCAGTTCCCCTACAACTCCATT– 3’
CCR9-R 5’ – CAGTTGGAGATGAACATGGCATA – 3’

CCR10 CCR10-F 5’ – TGCTCCTACTGAGACCCA – 3’
CCR1-R 5’ – CCCTGGGATTGTTTCTTT – 3’

VLA-4 VLA-4-F 5’ – AATGCCTCAGTGGTCAATCC – 3’
VLA-4-R 5’ – CTACCCAGCTGGAGCTGTTC – 3’

TLR5 TLR5-F 5’ – CAGTCCTGGAGCCTGTGTTGT– 3’
TLR5-R 5’ – ACCCGGCAAGCATTGTTCT – 3’

HPRT HPRT-F 5’ – AGCCTAAGATGAGCGCAAGT – 3’
HPRT-R 5’ – TTACTAGGCAGATGGCCACA – 3’
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Green mixture (Quantace, QT615). Forward and reverse
primer pairs were designed as shown in Table 1. Hypoxan-
thine-guanine phosphoribosyltransferase (HPRT) expression
was used as an internal reference in all PCR experiments. The
relative mRNA quantities in the samples were also calculated,
as described elsewhere.49,50

Statistical analysis

The results are expressed as the mean § SEM unless otherwise
noted. Student’s t-test or ANOVA was used to compare tumor
volumes between the two groups. The difference in survival
rates between the experimental groups was evaluated by
Kaplan–Meier analysis. p values <0 .05 were considered statis-
tically significant. All experiments were repeated more than
three times, and the results from representative experiments
are shown.
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