148 research outputs found

    Mid-J CO Emission From NGC 891: Microturbulent Molecular Shocks in Normal Star Forming Galaxies

    Full text link
    We have detected the CO(6-5), CO(7-6), and [CI] 370 micron lines from the nuclear region of NGC 891 with our submillimeter grating spectrometer ZEUS on the CSO. These lines provide constraints on photodissociation region (PDR) and shock models that have been invoked to explain the H_2 S(0), S(1), and S(2) lines observed with Spitzer. We analyze our data together with the H_2 lines, CO(3-2), and IR continuum from the literature using a combined PDR/shock model. We find that the mid-J CO originates almost entirely from shock-excited warm molecular gas; contributions from PDRs are negligible. Also, almost all the H_2 S(2) and half of the S(1) line is predicted to emerge from shocks. Shocks with a pre-shock density of 2x10^4 cm^-3 and velocities of 10 km/s and 20 km/s for C-shocks and J-shocks, respectively, provide the best fit. In contrast, the [CI] line emission arises exclusively from the PDR component, which is best parameterized by a density of 3.2x10^3 cm^-3 and a FUV field of G_o = 100 for both PDR/shock-type combinations. Our mid-J CO observations show that turbulence is a very important heating source in molecular clouds, even in normal quiescent galaxies. The most likely energy sources for the shocks are supernovae or outflows from YSOs. The energetics of these shock sources favor C-shock excitation of the lines.Comment: 18 pages, 2 figures, 6 tables, accepted by Ap

    Strong C+ emission in galaxies at z~1-2: Evidence for cold flow accretion powered star formation in the early Universe

    Get PDF
    We have recently detected the [CII] 157.7 micron line in eight star forming galaxies at redshifts 1 to 2 using the redshift(z) Early Universe Spectrometer (ZEUS). Our sample targets star formation dominant sources detected in PAH emission. This represents a significant addition to [CII] observations during the epoch of peak star formation. We have augmented this survey with observations of the [OI] 63 micron line and far infrared photometry from the PACS and SPIRE Herschel instruments as well as Spitzer IRS spectra from the literature showing PAH features. Our sources exhibit above average gas heating efficiency, many with both [OI]/FIR and [CII]/FIR ~1% or more. The relatively strong [CII] emission is consistent with our sources being dominated by star formation powered PDRs, extending to kpc scales. We suggest that the star formation mode in these systems follows a Schmidt-Kennicutt law similar to local systems, but at a much higher rate due to molecular gas surface densities 10 to 100 times that of local star forming systems. The source of the high molecular gas surface densities may be the infall of neutral gas from the cosmic web. In addition to the high [CII]/FIR values, we also find high [CII]/PAH ratios and, in at least one source, a cool dust temperature. This source, SWIRE 4-5, bears a resemblance in these diagnostics to shocked regions of Stephan's Quintet, suggesting that another mode of [CII] excitation in addition to normal photoelectric heating may be contributing to the observed [CII] line.Comment: Accepted for publication in Astrophysical Journal. To appear in December 20, 2014, V797 - 2 issu

    Chemically Distinct Nuclei and Outflowing Shocked Molecular Gas in Arp 220

    Get PDF
    We present the results of interferometric spectral line observations of Arp 220 at 3.5mm and 1.2mm from the Plateau de Bure Interferometer (PdBI), imaging the two nuclear disks in H13^{13}CN(10)(1 - 0) and (32)(3 - 2), H13^{13}CO+(10)^+(1 - 0) and (32)(3 - 2), and HN13^{13}C(32)(3 - 2) as well as SiO(21)(2 - 1) and (65)(6 - 5), HC15^{15}N(32)(3 - 2), and SO(6655)(6_6 - 5_5). The gas traced by SiO(65)(6 - 5) has a complex and extended kinematic signature including a prominent P Cygni profile, almost identical to previous observations of HCO+(32)^+(3 - 2). Spatial offsets 0.10.1'' north and south of the continuum centre in the emission and absorption of the SiO(65)(6 - 5) P Cygni profile in the western nucleus (WN) imply a bipolar outflow, delineating the northern and southern edges of its disk and suggesting a disk radius of 40\sim40 pc, consistent with that found by ALMA observations of Arp 220. We address the blending of SiO(65)(6 - 5) and H13^{13}CO+(32)^+(3 - 2) by considering two limiting cases with regards to the H13^{13}CO+^+ emission throughout our analysis. Large velocity gradient (LVG) modelling is used to constrain the physical conditions of the gas and to infer abundance ratios in the two nuclei. Our most conservative lower limit on the [H13^{13}CN]/[H13^{13}CO+^+] abundance ratio is 11 in the WN, cf. 0.10 in the eastern nucleus (EN). Comparing these ratios to the literature we argue on chemical grounds for an energetically significant AGN in the WN driving either X-ray or shock chemistry, and a dominant starburst in the EN.Comment: 28 pages, 17 figures, accepted to Ap

    Development of Aluminum LEKIDs for Balloon-Borne Far-IR Spectroscopy

    Get PDF
    We are developing lumped-element kinetic inductance detectors (LEKIDs) designed to achieve background-limited sensitivity for far-infrared (FIR) spectroscopy on a stratospheric balloon. The Spectroscopic Terahertz Airborne Receiver for Far-InfraRed Exploration (STARFIRE) will study the evolution of dusty galaxies with observations of the [CII] 158 μ\mum and other atomic fine-structure transitions at z=0.51.5z=0.5-1.5, both through direct observations of individual luminous infrared galaxies, and in blind surveys using the technique of line intensity mapping. The spectrometer will require large format (\sim1800 detectors) arrays of dual-polarization sensitive detectors with NEPs of 1×10171 \times 10^{-17} W Hz1/2^{-1/2}. The low-volume LEKIDs are fabricated with a single layer of aluminum (20 nm thick) deposited on a crystalline silicon wafer, with resonance frequencies of 100250100-250 MHz. The inductor is a single meander with a linewidth of 0.4 μ\mum, patterned in a grid to absorb optical power in both polarizations. The meander is coupled to a circular waveguide, fed by a conical feedhorn. Initial testing of a small array prototype has demonstrated good yield, and a median NEP of 4×10184 \times 10^{-18} W Hz1/2^{-1/2}.Comment: accepted for publication in Journal of Low Temperature Physic

    Spectroscopic FIR mapping of the disk and galactic wind of M82 with Herschel-PACS

    Full text link
    [Abridged] We present maps of the main cooling lines of the neutral atomic gas ([OI] at 63 and 145 micron and [CII] at 158 micron) and in the [OIII] 88 micron line of the starburst galaxy M82, carried out with the PACS spectrometer on board the Herschel satellite. By applying PDR modeling we derive maps of the main ISM physical parameters, including the [CII] optical depth, at unprecedented spatial resolution (~300 pc). We can clearly kinematically separate the disk from the outflow in all lines. The [CII] and [OI] distributions are consistent with PDR emission both in the disk and in the outflow. Surprisingly, in the outflow, the atomic and the ionized gas traced by the [OIII] line both have a deprojected velocity of ~75 km/s, very similar to the average velocity of the outflowing cold molecular gas (~ 100 km/s) and several times smaller than the outflowing material detected in Halpha (~ 600 km/s). This suggests that the cold molecular and neutral atomic gas and the ionized gas traced by the [OIII] 88 micron line are dynamically coupled to each other but decoupled from the Halpha emitting gas. We propose a scenario where cold clouds from the disk are entrained into the outflow by the winds where they likely evaporate, surviving as small, fairly dense cloudlets (n_H\sim 500-1000 cm^-3, G_0\sim 500- 1000, T_gas\sim300 K). We show that the UV photons provided by the starburst are sufficient to excite the PDR shells around the molecular cores. The mass of the neutral atomic gas in the outflow is \gtrsim 5-12x 10^7 M_sun to be compared with that of the molecular gas (3.3 x 10^8 M_sun) and of the Halpha emitting gas (5.8 x 10^6 M_sun). The mass loading factor, (dM/dt)/SFR, of the molecular plus neutral atomic gas in the outflow is ~ 2. Energy and momentum driven outflow models can explain the data equally well, if all the outflowing gas components are taken into account.Comment: 26 pages, 23 figures, 4 Tables, Accepted for publication in Astronomy & Astrophysic

    ISM conditions in z~0.2 Lyman-Break Analogs

    Full text link
    We present an analysis of far--infrared (FIR) [CII] and [OI] fine structure line and continuum observations obtained with HerschelHerschel/PACS, and CO(1-0) observations obtained with the IRAM Plateau de Bure Interferometer, of Lyman Break Analogs (LBAs) at z0.2z\sim 0.2. The principal aim of this work is to determine the typical ISM properties of z12z\sim 1-2 Main Sequence (MS) galaxies, with stellar masses between 109.510^{9.5} and 101110^{11} MM_{\odot}, which are currently not easily detectable in all these lines even with ALMA and NOEMA. We perform PDR modeling and apply different IR diagnostics to derive the main physical parameters of the FIR emitting gas and dust and we compare the derived ISM properties to those of galaxies on and above the MS at different redshifts. We find that the ISM properties of LBAs are quite extreme (low gas temperature, high density and thermal pressure) with respect to those found in local normal spirals and more active local galaxies. LBAs have no [CII] deficit despite having the high specific star formation rates (sSFRs) typical of starbursts. Although LBAs lie above the local MS, we show that their ISM properties are more similar to those of high-redshift MS galaxies than of local galaxies above the main sequence. This data set represents an important reference for planning future ALMA [CII] observations of relatively low-mass MS galaxies at the epoch of the peak of the cosmic star formation.Comment: 19 pages, 12 Figures,8 Tables, Accepted for publication in A&

    A deep Herschel/PACS observation of CO(40-39) in NGC 1068: a search for the molecular torus

    Get PDF
    Emission from high-J CO lines in galaxies has long been proposed as a tracer of X-ray dominated regions (XDRs) produced by AGN. Of particular interest is the question of whether the obscuring torus, which is required by AGN unification models, can be observed via high-J CO cooling lines. Here we report on the analysis of a deep Herschel-PACS observation of an extremely high J CO transition (40-39) in the Seyfert 2 galaxy NGC 1068. The line was not detected, with a derived 3σ\sigma upper limit of 2×1017Wm22 \times 10^{-17}\,\text{W}\,\text{m}^{-2}. We apply an XDR model in order to investigate whether the upper limit constrains the properties of a molecular torus in NGC 1068. The XDR model predicts the CO Spectral Line Energy Distributions for various gas densities and illuminating X-ray fluxes. In our model, the CO(40-39) upper limit is matched by gas with densities 106107cm3\sim 10^{6}-10^{7}\,\text{cm}^{-3}, located at 1.65pc1.6-5\,\text{pc} from the AGN, with column densities of at least 1025cm210^{25}\,\text{cm}^{-2}. At such high column densities, however, dust absorbs most of the CO(40-39) line emission at λ=65.69μ\lambda = 65.69\, \mum. Therefore, even if NGC 1068 has a molecular torus which radiates in the CO(40-39) line, the dust can attenuate the line emission to below the PACS detection limit. The upper limit is thus consistent with the existence of a molecular torus in NGC 1068. In general, we expect that the CO(40-39) is observable in only a few AGN nuclei (if at all), because of the required high gas column density, and absorption by dust.Comment: 22 pages, accepted for publication in Ap

    Excited OH+, H2O+, and H3O+ in NGC 4418 and Arp 220

    Full text link
    We report on Herschel/PACS observations of absorption lines of OH+, H2O+ and H3O+ in NGC 4418 and Arp 220. Excited lines of OH+ and H2O+ with E_lower of at least 285 and \sim200 K, respectively, are detected in both sources, indicating radiative pumping and location in the high radiation density environment of the nuclear regions. Abundance ratios OH+/H2O+ of 1-2.5 are estimated in the nuclei of both sources. The inferred OH+ column and abundance relative to H nuclei are (0.5-1)x10^{16} cm-2 and \sim2x10^{-8}, respectively. Additionally, in Arp 220, an extended low excitation component around the nuclear region is found to have OH+/H2O+\sim5-10. H3O+ is detected in both sources with N(H3O+)\sim(0.5-2)x10^{16} cm-2, and in Arp 220 the pure inversion, metastable lines indicate a high rotational temperature of ~500 K, indicative of formation pumping and/or hot gas. Simple chemical models favor an ionization sequence dominated by H+ - O+ - OH+ - H2O+ - H3O+, and we also argue that the H+ production is most likely dominated by X-ray/cosmic ray ionization. The full set of observations and models leads us to propose that the molecular ions arise in a relatively low density (\gtrsim10^4 cm-3) interclump medium, in which case the ionization rate per H nucleus (including secondary ionizations) is zeta>10^{-13} s-1, a lower limit that is severalx10^2 times the highest rate estimates for Galactic regions. In Arp 220, our lower limit for zeta is compatible with estimates for the cosmic ray energy density inferred previously from the supernova rate and synchrotron radio emission, and also with the expected ionization rate produced by X-rays. In NGC 4418, we argue that X-ray ionization due to an AGN is responsible for the molecular ion production.Comment: 24 pages, 13 figures. Accepted for publication in Astronomy & Astrophysic
    corecore