4 research outputs found

    Are braneworlds born isotropic?

    Get PDF
    It has recently been suggested that an isotropic singularity may be a generic feature of brane cosmologies, even in the inhomogeneous case. Using the covariant and gauge-invariant approach we present a detailed analysis of linear perturbations of the isotropic model Fb{\cal F}_b which is a past attractor in the phase space of homogeneous Bianchi models on the brane. We find that for matter with an equation of state parameter γ>1\gamma > 1, the dimensionless variables representing generic anisotropic and inhomogeneous perturbations decay as t→0t\to 0, showing that the model Fb{\cal F}_b is asymptotically stable in the past. We conclude that brane universes are born with isotropy naturally built-in, contrary to standard cosmology. The observed large-scale homogeneity and isotropy of the universe can therefore be explained as a consequence of the initial conditions if the brane-world paradigm represents a description of the very early universe.Comment: Changed to match published versio

    Anisotropy in Bianchi-type brane cosmologies

    Full text link
    The behavior near the initial singular state of the anisotropy parameter of the arbitrary type, homogeneous and anisotropic Bianchi models is considered in the framework of the brane world cosmological models. The matter content on the brane is assumed to be an isotropic perfect cosmological fluid, obeying a barotropic equation of state. To obtain the value of the anisotropy parameter at an arbitrary moment an evolution equation is derived, describing the dynamics of the anisotropy as a function of the volume scale factor of the Universe. The general solution of this equation can be obtained in an exact analytical form for the Bianchi I and V types and in a closed form for all other homogeneous and anisotropic geometries. The study of the values of the anisotropy in the limit of small times shows that for all Bianchi type space-times filled with a non-zero pressure cosmological fluid, obeying a linear barotropic equation of state, the initial singular state on the brane is isotropic. This result is obtained by assuming that in the limit of small times the asymptotic behavior of the scale factors is of Kasner-type. For brane worlds filled with dust, the initial values of the anisotropy coincide in both brane world and standard four-dimensional general relativistic cosmologies.Comment: 12 pages, no figures, to appear in Class. Quantum Gra

    Isotropic singularity in inhomogeneous brane cosmological models

    Full text link
    We discuss the asymptotic dynamical evolution of spatially inhomogeneous brane-world cosmological models close to the initial singularity. By introducing suitable scale-invariant dependent variables and a suitable gauge, we write the evolution equations of the spatially inhomogeneous G2G_{2} brane cosmological models with one spatial degree of freedom as a system of autonomous first-order partial differential equations. We study the system numerically, and we find that there always exists an initial singularity, which is characterized by the fact that spatial derivatives are dynamically negligible. More importantly, from the numerical analysis we conclude that there is an initial isotropic singularity in all of these spatially inhomogeneous brane cosmologies for a range of parameter values which include the physically important cases of radiation and a scalar field source. The numerical results are supported by a qualitative dynamical analysis and a calculation of the past asymptotic decay rates. Although the analysis is local in nature, the numerics indicates that the singularity is isotropic for all relevant initial conditions. Therefore this analysis, and a preliminary investigation of general inhomogeneous (G0G_0) models, indicates that it is plausible that the initial singularity is isotropic in spatially inhomogeneous brane-world cosmological models and consequently that brane cosmology naturally gives rise to a set of initial data that provide the conditions for inflation to subsequently take place.Comment: 32 pages with 8 pictures. submitted to Class. Quant. Gra
    corecore