111 research outputs found

    Cell Cycle Control by Xenopus p28^(Kix1) a Developmentally Regulated Inhibitor of Cyclin-dependent Kinases

    Get PDF
    We have isolated Xenopus p28^(Kix1), a member of the p21^(CIP1)/p27^(KIP1)/p57^(KIP2) family of cyclin-dependent kinase (Cdk) inhibitors. Members of this family negatively regulate cell cycle progression in mammalian cells by inhibiting the activities of Cdks. p28 shows significant sequence homology with p21, p27, and p57 in its N-terminal region, where the Cdk inhibition domain is known to reside. In contrast, the C-terminal domain of p28 is distinct from that of p21, p27, and p57. In co-immunoprecipitation experiments, p28 was found to be associated with Cdk2, cyclin E, and cyclin A, but not the Cdc2/cyclin B complex in Xenopus egg extracts. Xenopus p28 associates with the proliferating cell nuclear antigen, but with a substantially lower affinity than human p21. In kinase assays with recombinant Cdks, p28 inhibits pre-activated Cdk2/cyclin E and Cdk2/cyclin A, but not Cdc2/cyclin B. However, at high concentrations, p28 does prevent the activation of Cdc2/cyclin B by the Cdk-activating kinase. Consistent with the role of p28 as a Cdk inhibitor, recombinant p28 elicits an inhibition of both DNA replication and mitosis upon addition to egg extracts, indicating that it can regulate multiple cell cycle transitions. The level of p28 protein shows a dramatic developmental profile: it is low in Xenopus oocytes, eggs, and embryos up to stage 11, but increases approximately ~ 100-fold between stages 12 and 13, and remains high thereafter. The induction of p28 expression temporally coincides with late gastrulation. Thus, although p28 may play only a limited role during the early embryonic cleavages, it may function later in development to establish a somatic type of cell cycle. Taken together, our results indicate that Xenopus p28 is a new member of the p21/p27/p57 class of Cdk inhibitors, and that it may play a role in developmental processes

    Identification of a Novel 81-kDa Component of the Xenopus Origin Recognition Complex

    Get PDF
    The Xenopus origin recognition complex is essential for chromosomal DNA replication in cell-free extracts. We have immunopurified the Xenopus origin recognition complex with anti-Xorc2 antibodies and analyzed its composition and properties. Xorc2 (p63) is specifically associated with Xorc1 (p115) and up to four additional polypeptides (p81, p78, p45, and p40). The cDNA encoding p81 is highly homologous to various expressed sequence tags from humans and mice encoding a protein of previously unknown function. Immunodepletion of p81 from Xenopus egg extracts, which also results in the removal of Xorc2, completely abolishes chromosomal DNA replication. Thus, p81 appears to play a crucial role at S phase in higher eukaryotes

    The Rad9-Hus1-Rad1 Checkpoint Clamp Regulates Interaction of TopBP1 with ATR

    Get PDF
    TopBP1 serves as an activator of the ATR-ATRIP complex in response to the presence of incompletely replicated or damaged DNA. This process involves binding of ATR to the ATR-activating domain of TopBP1, which is located between BRCT domains VI and VII. TopBP1 displays increased binding to ATR-ATRIP in Xenopus egg extracts containing checkpoint-inducing DNA templates. We show that an N-terminal region of TopBP1 containing BRCT repeats I-II is essential for this checkpoint-stimulated binding of TopBP1 to ATR-ATRIP. The BRCT I-II region of TopBP1 also binds specifically to the Rad9-Hus1-Rad1 (9-1-1) complex in Xenopus egg extracts. This binding occurs via the C-terminal domain of Rad9 and depends upon phosphorylation of its Ser-373 residue. Egg extracts containing either a mutant of TopBP1 lacking the BRCT I-II repeats or a mutant of Rad9 with an alanine substitution at Ser-373 are defective in checkpoint regulation. Furthermore, an isolated C-terminal fragment from Rad9 is an effective inhibitor of checkpoint signaling in egg extracts. These findings suggest that interaction of the 9-1-1 complex with the BRCT I-II region of TopBP1 is necessary for binding of ATR-ATRIP to the ATR-activating domain of TopBP1 and the ensuing activation of ATR

    Claspin and the Activated Form of ATR-ATRIP Collaborate in the Activation of Chk1

    Get PDF
    Claspin is necessary for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated DNA. ATR possesses a regulatory partner called ATRIP. We have studied the respective roles of ATR-ATRIP and Claspin in the activation of Chk1. ATR-ATRIP bound well to various DNA templates in Xenopus egg extracts. ATR-ATRIP bound to a single-stranded DNA template was weakly active. By contrast, the ATR-ATRIP complex on a DNA template containing both single- and double-stranded regions displayed a large increase in kinase activity. This observation suggests that ATR-ATRIP normally undergoes activation upon association with specific nucleic acid structures at DNA replication forks. Without Claspin, activated ATR-ATRIP phosphorylated Chk1 weakly in a cell-free reaction. The addition of Claspin to this reaction strongly stimulated the phosphorylation of Chk1 by ATR-ATRIP. Claspin also induced significant autophosphorylation of Chk1 in the absence of ATR-ATRIP. Taken together, these results indicate that the checkpoint-dependent phosphorylation of Chk1 is a multistep process involving activation of the ATR-ATRIP complex at replication forks and presentation of Chk1 to this complex by Claspin

    Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication

    Get PDF
    Treslin, a TopBP1-interacting protein, is necessary for deoxyribonucleic acid (DNA) replication in vertebrates. Association between Treslin and TopBP1 requires cyclin-dependent kinase (Cdk) activity in Xenopus laevis egg extracts. We investigated the mechanism and functional importance of Cdk for this interaction using both X. laevis egg extracts and human cells. We found that Treslin also associated with TopBP1 in a Cdk-regulated manner in human cells and that Treslin was phosphorylated within a conserved Cdk consensus target sequence (on S976 in X. laevis and S1000 in humans). Recombinant human Cdk2–cyclin E also phosphorylated this residue of Treslin in vitro very effectively. Moreover, a mutant of Treslin that cannot undergo phosphorylation on this site showed significantly diminished binding to TopBP1. Finally, human cells harboring this mutant were severely deficient in DNA replication. Collectively, these results indicate that Cdk-mediated phosphorylation of Treslin during S phase is necessary for both its effective association with TopBP1 and its ability to promote DNA replication in human cells

    Cell cycle regulation of a Xenopus Wee1-like kinase

    Get PDF
    Using a polymerase chain reaction-based strategy, we have isolated a gene encoding a Wee1-like kinase from Xenopus eggs. The recombinant Xenopus Wee1 protein efficiently phosphorylates Cdc2 exclusively on Tyr- 15 in a cyclin-dependent manner. The addition of exogenous Wee1 protein to Xenopus cell cycle extracts results in a dose-dependent delay of mitotic initiation that is accompanied by enhanced tyrosine phosphorylation of Cdc2. The activity of the Wee1 protein is highly regulated during the cell cycle: the interphase, underphosphorylated form of Wee1 (68 kDa) phosphorylates Cdc2 very efficiently, whereas the mitotic, hyperphosphorylated version (75 kDa) is weakly active as a Cdc2-specific tyrosine kinase. The down-modulation of Wee1 at mitosis is directly attributable to phosphorylation, since dephosphorylation with protein phosphatase 2A restores its kinase activity. During interphase, the activity of this Wee1 homolog does not vary in response to the presence of unreplicated DNA. The mitosis-specific phosphorylation of Wee1 is due to at least two distinct kinases: the Cdc2 protein and another activity (kinase X) that may correspond to an MPM-2 epitope kinase. These studies indicate that the down-regulation of Wee1-like kinase activity at mitosis is a multistep process that occurs after other biochemical reactions have signaled the successful completion of S phase

    Phosphorylation of Chk1 by ATM- and Rad3-related (ATR) in Xenopus Egg Extracts Requires Binding of ATRIP to ATR but Not the Stable DNA-binding or Coiled-coil Domains of ATRIP

    Get PDF
    ATR, a critical regulator of DNA replication and damage checkpoint responses, possesses a binding partner called ATRIP. We have studied the functional properties of Xenopus ATR and ATRIP in incubations with purified components and in frog egg extracts. In purified systems, ATRIP associates with DNA in both RPA-dependent and RPA-independent manners, depending on the composition of the template. However, in egg extracts, only the RPA-dependent mode of binding to DNA can be detected. ATRIP adopts an oligomeric state in egg extracts that depends upon binding to ATR. In addition, ATR and ATRIP are mutually dependent on one another for stable binding to DNA in egg extracts. The ATR-dependent oligomerization of ATRIP does not require an intact coiled-coil domain in ATRIP and does not change in the presence of checkpoint-inducing DNA templates. Egg extracts containing a mutant of ATRIP that cannot bind to ATR are defective in the phosphorylation of Chk1. However, extracts containing mutants of ATRIP lacking stable DNA-binding and coiled-coil domains show no reduction in the phosphorylation of Chk1 in response to defined DNA templates. Furthermore, activation of Chk1 does not depend upon RPA under these conditions. These results suggest that ATRIP must associate with ATR in order for ATR to carry out the phosphorylation of Chk1 effectively. However, this function of ATRIP does not involve its ability to mediate the stable binding of ATR to defined checkpoint-inducing DNA templates in egg extracts, does not require an intact coiled-coil domain, and does not depend on RPA

    MTBP, the Partner of Treslin, Contains a Novel DNA-Binding Domain, That Is Essential for Proper Initiation of DNA Replication

    Get PDF
    Treslin, which is essential for incorporation of Cdc45 into the replicative helicase, possesses a partner called MTBP. We have analyzed Xenopus and human MTBP to assess its role in DNA replication. Depletion of MTBP from Xenopus egg extracts, which also removes Treslin, abolishes DNA replication. These extracts be can rescued with recombinant Treslin-MTBP, but not Treslin or MTBP alone. Thus, Treslin-MTBP is collectively necessary for replication. We have identified a C-terminal region of MTBP (the CTM domain) that binds efficiently to both double-stranded DNA and G-quadruplex (G4) DNA. This domain also exhibits homology with budding yeast Sld7. Mutants of MTBP without a functional CTM domain are defective for DNA replication in Xenopus egg extracts. These mutants display an impaired localization to chromatin and the inability to support loading of Cdc45. Human cells harboring such a mutant also display severe S-phase defects. Thus, the CTM domain of MTBP plays a critical role in localizing Treslin-MTBP to the replication apparatus for initiation

    The Xenopus Suc1/Cks Protein Promotes the Phosphorylation of G2/M Regulators

    Get PDF
    The entry into mitosis is controlled by Cdc2/cyclin B, also known as maturation or M-phase promoting factor (MPF). In Xenopus egg extracts, the inhibitory phosphorylations of Cdc2 on Tyr-15 and Thr-14 are controlled by the phosphatase Cdc25 and the kinases Myt1 and Wee1. At mitosis, Cdc25 is activated and Myt1 and Wee1 are inactivated through phosphorylation by multiple kinases, including Cdc2 itself. The Cdc2-associated Suc1/Cks1 protein (p9) is also essential for entry of egg extracts into mitosis, but the molecular basis of this requirement has been unknown. We find that p9 strongly stimulates the regulatory phosphorylations of Cdc25, Myt1, and Wee1 that are carried out by the Cdc2/cyclin B complex. Overexpression of the prolyl isomerase Pin1, which binds to the hyperphosphorylated forms of Cdc25, Myt1, and Wee1 found at M-phase, is known to block the initiation of mitosis in egg extracts. We have observed that Pin1 specifically antagonizes the stimulatory effect of p9 on phosphorylation of Cdc25 by Cdc2/cyclin B. This observation could explain why overexpression of Pin1 inhibits mitotic initiation. These findings suggest that p9 promotes the entry into mitosis by facilitating phosphorylation of the key upstream regulators of Cdc2
    corecore