8,055 research outputs found

    On the QED Effective Action in Time Dependent Electric Backgrounds

    Get PDF
    We apply the resolvent technique to the computation of the QED effective action in time dependent electric field backgrounds. The effective action has both real and imaginary parts, and the imaginary part is related to the pair production probability in such a background. The resolvent technique has been applied previously to spatially inhomogeneous magnetic backgrounds, for which the effective action is real. We explain how dispersion relations connect these two cases, the magnetic case which is essentially perturbative in nature, and the electric case where the imaginary part is nonperturbative. Finally, we use a uniform semiclassical approximation to find an expression for very general time dependence for the background field. This expression is remarkably similar in form to Schwinger's classic result for the constant electric background.Comment: 27 pages, no figures; reference adde

    Magnetic-field Induced Screening Effect and Collective Excitations

    Full text link
    We explicitly construct the fermion propagator in a magnetic field background B to take the lowest Landau-level approximation. We analyze the energy and momentum dependence in the polarization tensor and discuss the collective excitations. We find there appear two branches of collective modes in one of two transverse gauge particles; one represents a massive and attenuated gauge particle and the other behaves similar to the zero sound at finite density.Comment: 5 pages, 3 figures; references on the zero sound added and typos correcte

    High spatial resolution observations of CUDSS14A: a SCUBA-selected ultraluminous galaxy at high redshift

    Get PDF
    The definitive version is available at www.blackwell-synergy.com '. Copyright Blackwell Publishing DOI : 10.1046/j.1365-8711.2000.03822.xWe present a high-resolutionmillimetre interferometric image of the brightest SCUBA- selected galaxy from the Canada-UK deep SCUBA survey (CUDSS). We make a very clear detection at 1.3 mm, but fail to resolve any structure in the source.Peer reviewe

    The SCUBA Local Universe Galaxy Survey I: First Measurements of the Submillimetre Luminosity and Dust Mass Functions

    Full text link
    We have used SCUBA to observe a complete sample of 104 galaxies selected at 60 microns from the IRAS BGS and we present here the 850 micron measurements. Fitting the 60,100 and 850 micron fluxes with a single temperature dust model gives the sample mean temperature T=36 K and beta = 1.3. We do not rule out the possibility of dust which is colder than this, if a 20 K component was present then our dust masses would increase by factor 1.5-3. We present the first measurements of the luminosity and dust mass functions, which were well fitted by Schechter functions (unlike those 60 microns). We have correlated many global galaxy properties with the submillimetre and find that there is a tendancy for less optically luminous galaxies to contain warmer dust and have greater star formation efficiencies (cf. Young 1999). The average gas-to-dust ratio for the sample is 581 +/- 43 (using both atomic and molecular hydrogen), significantly higher than the Galactic value of 160. We believe this discrepancy is due to a cold dust component at T < 20 K. There is a suprisingly tight correlation between dust mass and the mass of molecular hydrogen as estimated from CO measurements, with an intrinsic scatter of ~50%.Comment: 24 pages, 15 figures, 8 tables, accepted for publication in MNRA

    Euler-Heisenberg lagrangians and asymptotic analysis in 1+1 QED, part 1: Two-loop

    Full text link
    We continue an effort to obtain information on the QED perturbation series at high loop orders, and particularly on the issue of large cancellations inside gauge invariant classes of graphs, using the example of the l - loop N - photon amplitudes in the limit of large photons numbers and low photon energies. As was previously shown, high-order information on these amplitudes can be obtained from a nonperturbative formula, due to Affleck et al., for the imaginary part of the QED effective lagrangian in a constant field. The procedure uses Borel analysis and leads, under some plausible assumptions, to a number of nontrivial predictions already at the three-loop level. Their direct verification would require a calculation of this `Euler-Heisenberg lagrangian' at three-loops, which seems presently out of reach. Motivated by previous work by Dunne and Krasnansky on Euler-Heisenberg lagrangians in various dimensions, in the present work we initiate a new line of attack on this problem by deriving and proving the analogous predictions in the simpler setting of 1+1 dimensional QED. In the first part of this series, we obtain a generalization of the formula of Affleck et al. to this case, and show that, for both Scalar and Spinor QED, it correctly predicts the leading asymptotic behaviour of the weak field expansion coefficients of the two loop Euler-Heisenberg lagrangians.Comment: 28 pages, 1 figures, final published version (minor modifications, refs. added

    Defining the Range of Cellular Components, Including Internal Antigens, That Can Serve as Targets of Graft Rejection

    Get PDF
    The mechanisms underlying rejection of grafted neural tissue are still being defined. Mechanisms relevant to genetically engineered cells are of current interest. To date, attention has focused on major histocompatibility complex (MHC) antigens as targets of graft rejection. Yet even when there is no MHC disparity, as when the patient's own cells are genetically altered, there is still a potential for graft rejection, directed against the novel antigens. We illustrate this in a rat model

    U_A(1) Anomaly at high temperature: the scalar-pseudoscalar splitting in QCD

    Full text link
    We estimate the splitting between the spatial correlation lengths in the scalar and pseudoscalar channels in QCD at high temperature. The splitting is due to the contribution of the instanton/anti-instanton chains in the thermal ensemble, even though instanton contributions to thermodynamic quantities are suppressed. The splitting vanishes at asymptotically high temperatures as ΔM/M(ΛQCD/T)b\Delta M/M\propto (\Lambda_{QCD}/T)^b, where bb is the beta function coefficient.Comment: 5 p

    Extended de Sitter Theory of Two Dimensional Gravitational Forces

    Full text link
    We present a simple unifying gauge theoretical formulation of gravitational theories in two dimensional spacetime. This formulation includes the effects of a novel matter-gravity coupling which leads to an extended de Sitter symmetry algebra on which the gauge theory is based. Contractions of this theory encompass previously studied cases.Comment: 19pp, no figs., CTP 2228, UCONN-93-

    Chern-Simons matrix model: coherent states and relation to Laughlin wavefunctions

    Full text link
    Using a coherent state representation we derive many-body probability distributions and wavefunctions for the Chern-Simons matrix model proposed by Polychronakos and compare them to the Laughlin ones. We analyze two different coherent state representations, corresponding to different choices for electron coordinate bases. In both cases we find that the resulting probability distributions do not quite agree with the Laughlin ones. There is agreement on the long distance behavior, but the short distance behavior is different.Comment: 15 pages, LaTeX; one reference added, abstract and section 5 expanded, typos correcte

    Simplified Vacuum Energy Expressions for Radial Backgrounds and Domain Walls

    Full text link
    We extend our previous results of simplified expressions for functional determinants for radial Schr\"odinger operators to the computation of vacuum energy, or mass corrections, for static but spatially radial backgrounds, and for domain wall configurations. Our method is based on the zeta function approach to the Gel'fand-Yaglom theorem, suitably extended to higher dimensional systems on separable manifolds. We find new expressions that are easy to implement numerically, for both zero and nonzero temperature.Comment: 30 page
    corecore