20,644 research outputs found
Realizable optimal control for a remotely piloted research vehicle
The design of a control system using the linear-quadratic regulator (LQR) control law theory for time invariant systems in conjunction with an incremental gradient procedure is presented. The incremental gradient technique reduces the full-state feedback controller design, generated by the LQR algorithm, to a realizable design. With a realizable controller, the feedback gains are based only on the available system outputs instead of being based on the full-state outputs. The design is for a remotely piloted research vehicle (RPRV) stability augmentation system. The design includes methods for accounting for noisy measurements, discrete controls with zero-order-hold outputs, and computational delay errors. Results from simulation studies of the response of the RPRV to a step in the elevator and frequency analysis techniques are included to illustrate these abnormalities and their influence on the controller design
UNAERO: A package of FORTRAN subroutines for approximating unsteady aerodynamics in the time domain
This report serves as an instruction and maintenance manual for a collection of CDC CYBER FORTRAN IV subroutines for approximating the unsteady aerodynamic forces in the time domain. The result is a set of constant-coefficient first-order differential equations that approximate the dynamics of the vehicle. Provisions are included for adjusting the number of modes used for calculating the approximations so that an accurate approximation is generated. The number of data points at different values of reduced frequency can also be varied to adjust the accuracy of the approximation over the reduced-frequency range. The denominator coefficients of the approximation may be calculated by means of a gradient method or a least-squares approximation technique. Both the approximation methods use weights on the residual error. A new set of system equations, at a different dynamic pressure, can be generated without the approximations being recalculated
NASA LARC RAFTOR documentation version 1.0
The use of a preprocessor of the LaRC computer center that converts RAFTOR source into FORTRAN source code is described. The purpose of RAFTOR is to make FORTRAN a better programming language for both writing and structuring programs. It is concluded that RAFTOR can generate a well structured program with a source code that is easy to follow
Inspection of two Brayton rotating units after extensive endurance testing
A system was designed to produce 2-10 kW net continuous electric power for at least 5 years. The turbine-alternator-compressor power conversion unit in the system is designated Brayton Rotating Unit (BRU). Four BRU's were fabricated and extensively tested. One BRU has accumulated 11,000 hours of operation, and another has accumulated in excess of 21,000 hours. Testing has demonstrated that the BRU's have met or exceeded performance objectives. Two BRU's were disassembled and given a thorough post-test inspection. The inspection results show that after 21,000 hours of operation there is no apparent wear or failure mode that will prevent the attainment of the 5-year life objective
Foldable conduit Patent
Foldable conduit capable of springing back as self erecting structural membe
Application of two design methods for active flutter suppression and wind-tunnel test results
The synthesis, implementation, and wind tunnel test of two flutter suppression control laws for an aeroelastic model equipped with a trailing edge control surface are presented. One control law is based on the aerodynamic energy method, and the other is based on results of optimal control theory. Analytical methods used to design the control laws and evaluate their performance are described. At Mach 0.6, 0.8, and 0.9, increases in flutter dynamic pressure were obtained but the full 44 percent increase was not achieved. However at Mach 0.95, the 44 percent increase was achieved with both control laws. Experimental results indicate that the performance of the systems is not so effective as that predicted by analysis, and that wind tunnel turbulence plays an important role in both control law synthesis and demonstration of system performance
Performance criteria guideline for three explosion protection methods of electrical equipment rated up to 15,000 volts AC
The Bureau of Mines, U.S. Department of the Interior, is reviewing explosion protection methods for use in gassy coal mines. This performance criteria guideline is an evaluation of three explosion protection methods of machines electrically powered with voltages up to 15,000 volts ac. A sufficient amount of basic research has been accomplished to verify that the explosion proof and pressurized enclosure methods can provide adequate explosion protection with the present state of the art up to 15,000 volts ac. This routine application of the potted enclosure as a stand alone protection method requires further investigation or development in order to clarify performance criteria and verification certification requirements. An extensive literature search, a series of high voltage tests, and a design evaluation of the three explosion protection methods indicate that the explosion proof, pressurized, and potted enclosures can all be used to enclose up to 15,000 volts ac
Control law parameterization for an aeroelastic wind-tunnel model equipped with an active roll control system and comparison with experiment
Nominal roll control laws were designed, implemented, and tested on an aeroelastically-scaled free-to-roll wind-tunnel model of an advanced fighter configuration. The tests were performed in the NASA Langley Transonic Dynamics Tunnel. A parametric study of the nominal roll control system was conducted. This parametric study determined possible control system gain variations which yielded identical closed-loop stability (roll mode pole location) and identical roll response but different maximum control-surface deflections. Comparison of analytical predictions with wind-tunnel results was generally very good
The 1200-Hz Brayton electrical research components
Electrical components of Brayton energy conversion system including voltage regulator, alternator, and speed contro
Investigating Heating and Cooling in the BCS & B55 Cluster Samples
We study clusters in the BCS cluster sample which are observed by Chandra and
are more distant than redshift, z>0.1. We select from this subsample the
clusters which have both a short central cooling time and a central temperature
drop, and also those with a central radio source. Six of the clusters have
clear bubbles near the centre. We calculate the heating by these bubbles and
express it as the ratio r_heat/r_cool=1.34+/-0.20. This result is used to
calculate the average size of bubbles expected in all clusters with central
radio sources. In three cases the predicted bubble sizes approximately match
the observed radio lobe dimensions.
We combine this cluster sample with the B55 sample studied in earlier work to
increase the total sample size and redshift range. This extended sample
contains 71 clusters in the redshift range 0<z<0.4. The average distance out to
which the bubbles offset the X-ray cooling in the combined sample is at least
r_heat/r_cool=0.92+/-0.11. The distribution of central cooling times for the
combined sample shows no clusters with clear bubbles and t_cool>1.2Gyr. An
investigation of the evolution of cluster parameters within the redshift range
of the combined samples does not show any clear variation with redshift.Comment: 12 pages, 9 figures, accepted for publication in MNRA
- …