2,844 research outputs found
The limitations of Slater's element-dependent exchange functional from analytic density functional theory
Our recent formulation of the analytic and variational Slater-Roothaan (SR)
method, which uses Gaussian basis sets to variationally express the molecular
orbitals, electron density and the one body effective potential of density
functional theory, is reviewed. Variational fitting can be extended to the
resolution of identity method,where variationality then refers to the error in
each two electron integral and not to the total energy. It is proposed that the
appropriate fitting functions be charge neutral and that all ab initio energies
be evaluated using two-center fits of the two-electron integrals. The SR method
has its root in the Slater's Xalpha method and permits an arbitrary scaling of
the Slater-Gaspar-Kohn-Sham exchange-correlation potential around each atom in
the system. Of several ways of choosing the scaling factors (Slater's exchange
parameters), two most obvious are the Hartree-Fock (HF), alpha_HF, values and
the exact atomic, alpha_EA, values. The performance of this simple analytic
model with both sets for atomization energies of G2 set of 148 molecules is
better than the local density approximation or the HF theory, although the
errors in atomization energy are larger than the target chemical accuracy.
To improve peformance for atomization energies, the SR method is
reparametrized to give atomization energies of 148 molecules to be comparbale
to those obtained by one of the most widely used generalized gradient
approximations. The mean absolute error in ionization potentials of 49 atoms
and molecules is about 0.5 eV and that in bond distances of 27 molecules is
about 0.02 Angstrom. The overall good performance of the computationally
efficient SR method using any reasonable set of alpha values makes it a
promising method for study of large systems.Comment: 33 pages, Uses RevTex, to appear in The Journal of Chemical Physic
Accurate molecular energies by extrapolation of atomic energies using an analytic quantum mechanical model
Using a new analytic quantum mechanical method based on Slater's Xalpha
method, we show that a fairly accurate estimate of the total energy of a
molecule can be obtained from the exact energies of its constituent atoms. The
mean absolute error in the total energies thus determined for the G2 set of 56
molecules is about 16 kcal/mol, comparable to or better than some popular pure
and hybrid density functional models.Comment: 5 pages, REVTE
Theoretical infra-red, Raman, and Optical spectra of the B36N36 cage
The B36N36 fullerene-like cage structure was proposed as candidate structure
for the single-shell boron-nitride cages observed in electron-beam irradiation
experiment. We have performed all electron density functional calculations,
with large polarized Gaussian basis sets, on the B36N36 cage. We show that the
cage is energetically and vibrationally stable. The infra-red, Raman and
optical spectra are calculated. The predicted spectra, in combination with
experimentally measured spectra, will be useful in conclusive assignment of the
proposed B36N36 cage. The vertical and adiabatic ionization potentials as well
as static dipole polarizability are also reported.Comment: RevTex, 4 pages, 4 figures (TO appear in Physical Review A (Breif
Report)
On the role of a new type of correlated disorder in extended electronic states in the Thue-Morse lattice
A new type of correlated disorder is shown to be responsible for the
appearance of extended electronic states in one-dimensional aperiodic systems
like the Thue-Morse lattice. Our analysis leads to an understanding of the
underlying reason for the extended states in this system, for which only
numerical evidence is available in the literature so far. The present work also
sheds light on the restrictive conditions under which the extended states are
supported by this lattice.Comment: 11 pages, LaTeX V2.09, 1 figure (available on request), to appear in
Physical Review Letter
Localization Properties of Electronic States in Polaron Model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers
We numerically investigate localization properties of electronic states in a
static model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with
realistic parameters obtained by quantum-chemical calculation. The randomness
in the on-site energies caused by the electron-phonon coupling are completely
correlated to the off-diagonal parts. In the single electron model, the effect
of the hydrogen-bond stretchings, the twist angles between the base pairs and
the finite system size effects on the energy dependence of the localization
length and on the Lyapunov exponent are given. The localization length is
reduced by the influence of the fluctuations in the hydrogen bond stretchings.
It is also shown that the helical twist angle affects the localization length
in the poly(dG)-poly(dC) DNA polymer more strongly than in the
poly(dA)-poly(dT) one. Furthermore, we show resonance structures in the energy
dependence of the localization length when the system size is relatively small.Comment: 6 pages, 6 figure
Resonance Effects in the Nonadiabatic Nonlinear Quantum Dimer
The quantum nonlinear dimer consisting of an electron shuttling between the
two sites and in weak interaction with vibrations, is studied numerically under
the application of a DC electric field. A field-induced resonance phenomenon
between the vibrations and the electronic oscillations is found to influence
the electronic transport greatly. For initially delocalization of the electron,
the resonance has the effect of a dramatic increase in the transport. Nonlinear
frequency mixing is identified as the main mechanism that influences transport.
A characterization of the frequency spectrum is also presented.Comment: 7 pages, 6 figure
The oldest X-ray supernovae: X-ray emission from 1941C, 1959D, 1968D
We have studied the X-ray emission from four historical Type-II supernovae
(the newly-discovered 1941C in NGC 4631 and 1959D in NGC 7331; and 1968D, 1980K
in NGC 6946), using Chandra ACIS-S imaging. In particular, the first three are
the oldest ever found in the X-ray band, and provide constraints on the
properties of the stellar wind and circumstellar matter encountered by the
expanding shock at more advanced stages in the transition towards the remnant
phase. We estimate emitted luminosities ~ 5 x 10^{37} erg/s for SN 1941C, ~ a
few x 10^{37} erg/s for SN 1959D, ~ 2 x 10^{38} erg/s for SN 1968D, and ~ 4 x
10^{37} erg/s for SN 1980K, in the 0.3-8 keV band. X-ray spectral fits to SN
1968D suggest the presence of a harder component, possibly a power law with
photon index ~ 2, contributing ~ 10^{37} erg/s in the 2-10 keV band. We
speculate that it may be evidence of non-thermal emission from a Crab-like
young pulsar.Comment: 6 pages, accepted by ApJ. Revised version with a couple of added
references. Thanks to A. Kong and E. Schlegel for their comments. Credit to
Holt et al. (2003) for the X-ray discovery of SN 1968D, overlooked in other
recent catalog
Topological Phases in Graphitic Cones
The electronic structure of graphitic cones exhibits distinctive topological
features associated with the apical disclinations. Aharonov-Bohm
magnetoconductance oscillations (period Phi_0) are completely absent in rings
fabricated from cones with a single pentagonal disclination. Close to the apex,
the local density of states changes qualitatively, either developing a cusp
which drops to zero at the Fermi energy, or forming a region of nonzero density
across the Fermi energy, a local metalization of graphene.Comment: 4 pages, RevTeX 4, 3 PostScript figure
Upper bounds on wavepacket spreading for random Jacobi matrices
A method is presented for proving upper bounds on the moments of the position
operator when the dynamics of quantum wavepackets is governed by a random
(possibly correlated) Jacobi matrix. As an application, one obtains sharp upper
bounds on the diffusion exponents for random polymer models, coinciding with
the lower bounds obtained in a prior work. The second application is an
elementary argument (not using multiscale analysis or the Aizenman-Molchanov
method) showing that under the condition of uniformly positive Lyapunov
exponents, the moments of the position operator grow at most logarithmically in
time.Comment: final version, to appear in CM
White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Linewidths: Kepler Observations of 27 Pulsating DA White Dwarfs Through K2 Campaign 8
We present photometry and spectroscopy for 27 pulsating hydrogen-atmosphere
white dwarfs (DAVs, a.k.a. ZZ Ceti stars) observed by the Kepler space
telescope up to K2 Campaign 8, an extensive compilation of observations with
unprecedented duration (>75 days) and duty cycle (>90%). The space-based
photometry reveals pulsation properties previously inaccessible to ground-based
observations. We observe a sharp dichotomy in oscillation mode linewidths at
roughly 800 s, such that white dwarf pulsations with periods exceeding 800 s
have substantially broader mode linewidths, more reminiscent of a damped
harmonic oscillator than a heat-driven pulsator. Extended Kepler coverage also
permits extensive mode identification: We identify the spherical degree of 61
out of 154 unique radial orders, providing direct constraints of the rotation
period for 20 of these 27 DAVs, more than doubling the number of white dwarfs
with rotation periods determined via asteroseismology. We also obtain
spectroscopy from 4m-class telescopes for all DAVs with Kepler photometry.
Using these homogeneously analyzed spectra we estimate the overall mass of all
27 DAVs, which allows us to measure white dwarf rotation as a function of mass,
constraining the endpoints of angular momentum in low- and intermediate-mass
stars. We find that 0.51-to-0.73-solar-mass white dwarfs, which evolved from
1.7-to-3.0-solar-mass ZAMS progenitors, have a mean rotation period of 35 hr
with a standard deviation of 28 hr, with notable exceptions for higher-mass
white dwarfs. Finally, we announce an online repository for our Kepler data and
follow-up spectroscopy, which we collect at http://www.k2wd.org.Comment: 33 pages, 31 figures, 5 tables; accepted for publication in ApJS. All
raw and reduced data are collected at http://www.k2wd.or
- …