1,411 research outputs found

    Overlapping Coalition Formation for Efficient Data Fusion in Multi-Sensor Networks

    No full text
    This paper develops new algorithms for coalition formation within multi-sensor networks tasked with performing wide-area surveillance. Specifically, we cast this application as an instance of coalition formation, with overlapping coalitions. We show that within this application area sub-additive coalition valuations are typical, and we thus use this structural property of the problem to we derive two novel algorithms (an approximate greedy one that operates in polynomial time and has a calculated bound to the optimum, and an optimal branch-and-bound one) to find the optimal coalition structure in this instance. We empirically evaluate the performance of these algorithms within a generic model of a multi-sensor network performing wide area surveillance. These results show that the polynomial algorithm typically generated solutions much closer the optimal than the theoretical bound, and prove the effectiveness of our pruning procedure

    Input-output relations at dispersing and absorbing planar multilayers for the quantized electromagnetic field containing evanescent components

    Full text link
    By using the Green-function concept of quantization of the electromagnetic field in dispersing and absorbing media, the quantized field in the presence of a dispersing and absorbing dielectric multilayer plate is studied. Three-dimensional input-output relations are derived for both amplitude operators in the k{\bf k}-space and the field operators in the coordinate space. The conditions are discussed, under which the input-output relations can be expressed in terms of bosonic operators. The theory applies to both (effectively) free fields and fields, created by active atomic sources inside and/or outside the plate, including also evanescent-field components.Comment: 14 pages, 1 figur

    Nodal Spin Density Wave and band topology of the FeAs based materials

    Full text link
    The recently discovered FeAs-based materials exhibit a (π,0)(\pi,0) Spin Density Wave (SDW) in the undoped state, which gives way to superconductivity upon doping. Here we show that due to an interesting topological feature of the band structure, the SDW state cannot acquire a full gap. This is demonstrated within the SDW mean-field theory of both a simplified two band model and a more realistic 5-band model. The positions of the nodes are different in the two models and can be used to detected the validity of each model.Comment: rewritten for clarit

    Checkerboard charge density wave and pseudogap in high-TcT_{c} cuprates

    Full text link
    We consider the scenario where a 4-lattice constant, rotationally symmetric charge density wave (CDW) is present in the underdoped cuprates. We prove a theorem that puts strong constraint on the possible form factor of such a CDW. We demonstrate, within mean-field theory, that a particular form factor within the allowed class describes the angle-resolved photoemission and scan tunneling spectroscopy well. We conjecture that the ``large pseudogap'' in cuprates is the consequence of this type of charge density wave.Comment: We add a new section II on the symmetry property of the checkerboard CD

    Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings

    Full text link
    Within the framework of quantization of the macroscopic electromagnetic field, equations of motion and an effective Hamiltonian for treating both the resonant dipole-dipole interaction between two-level atoms and the resonant atom-field interaction are derived, which can suitably be used for studying the influence of arbitrary dispersing and absorbing material surroundings on these interactions. The theory is applied to the study of the transient behavior of two atoms that initially share a single excitation, with special emphasis on the role of the two competing processes of virtual and real photon exchange in the energy transfer between the atoms. In particular, it is shown that for weak atom-field interaction there is a time window, where the energy transfer follows a rate regime of the type obtained by ordinary second-order perturbation theory. Finally, the resonant dipole-dipole interaction is shown to give rise to a doublet spectrum of the emitted light for weak atom-field interaction and a triplet spectrum for strong atom-field interaction.Comment: 15 pages, 1 figure, RevTE

    Stimulated emission of Cooper pairs in a high-temperature cuprate superconductor

    Full text link
    The concept of stimulated emission of bosons has played an important role in modern science and technology, and constitutes the working principle for lasers. In a stimulated emission process, an incoming photon enhances the probability that an excited atomic state will transition to a lower energy state and generate a second photon of the same energy. It is expected, but not experimentally shown, that stimulated emission contributes significantly to the zero resistance current in a superconductor by enhancing the probability that scattered Cooper pairs will return to the macroscopically occupied condensate instead of entering any other state. Here, we use time- and angle-resolved photoemission spectroscopy to study the initial rise of the non-equilibrium quasiparticle population in a Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} cuprate superconductor induced by an ultrashort laser pulse. Our finding reveals significantly slower buildup of quasiparticles in the superconducting state than in the normal state. The slower buildup only occurs when the pump pulse is too weak to deplete the superconducting condensate, and for cuts inside the Fermi arc region. We propose this is a manifestation of stimulated recombination of broken Cooper pairs, and signals an important momentum space dichotomy in the formation of Cooper pairs inside and outside the Fermi arc region.Comment: 16 pages, 4 figure

    Resonant Energy Exchange between Atoms in Dispersing and Absorbing Surroundings

    Get PDF
    Within the framework of quantization of the macroscopic electromagnetic field, a master equation describing both the resonant dipole-dipole interaction (RDDI) and the resonant atom-field interaction (RAFI) in the presence of dispersing and absorbing macroscopic bodies is derived, with the relevant couplings being expressed in terms of the surroundings-assisted Green tensor. It is shown that under certain conditions the RDDI can be regarded as being governed by an effective Hamiltonian. The theory, which applies to both weak and strong atom-field coupling, is used to study the resonant energy exchange between two (two-level) atoms sharing initially a single excitation. In particular, it is shown that in the regime of weak atom-field coupling there is a time window, where the energy transfer follows a transfer-rate law of the type obtained by ordinary second-order perturbation theory. Finally, the spectrum of the light emitted during the energy transfer is studied and the line splittings are discussed.Comment: 9 pages, 5 figs, Proceedings of ICQO'2002, Raubichi, to appear in Optics and Spectroscop

    Atomic entanglement near a realistic microsphere

    Get PDF
    We study a scheme for entangling two-level atoms located close to the surface of a dielectric microsphere. The effect is based on medium-assisted spontaneous decay, rigorously taking into account dispersive and absorptive properties of the microsphere. We show that even in the weak-coupling regime, where the Markov approximation applies, entanglement up to 0.35 ebits between two atoms can be created. However, larger entanglement and violation of Bell's inequality can only be achieved in the strong-coupling regime.Comment: 16 pages, 4 figures, Late

    From disease incubation to disease receipt:Representing epidemics and race in pre- and post-second world war American cinema (1931–1939 and 1950–1962)

    Get PDF
    This article analyses continuities and changes in how disease has been instrumentalised in cinema as a way of conceptualizing race—comparing five films depicting epidemics produced before the Second World War and five after. In the 1930s films, non-white populations often passively accept assistance in dealing with epidemic disease—a paternalistic white savior narrative—but not always with “gratitude”, and sometimes direct resistance. Here, epidemics take root in physical sites of economic “underdevelopment”, perpetuated further by perceived “premodern” cultural practices demarcated down the lines of race or ethnicity, and intersect with other gendered and socio-economic categories. After the war, while some cinematic tropes such as the “white knight” continue, other narratives emerge including a shift in emphasis away from the Othered environment as the nexus of disease (the disease’s “incubation”), and towards greater alarm about the appearance of disease within recipient, frequently white, communities

    Fusion at Detection Level for Frontal Object Perception

    No full text
    International audienceIntelligent vehicle perception involves the correct detection and tracking of moving objects. Taking into account all the possible information at early levels of the perception task can improve the final model of the environment. In this paper, we present an evidential fusion framework to represent and combine evidence from multiple lists of sensor detections. Our fusion framework considers the position, shape and appearance information to represent, associate and combine sensor detections. Although our approach takes place at detection level, we propose a general architecture to include it as a part of a whole perception solution. Several experiments were conducted using real data from a vehicle demonstrator equipped with three main sensors: lidar, radar and camera. The obtained results show improvements regarding the reduction of false detections and mis-classifications of moving objects
    corecore