25 research outputs found

    Learning from minimally labeled data with accelerated convolutional neural networks

    Get PDF
    The main objective of an Artificial Vision Algorithm is to design a mapping function that takes an image as an input and correctly classifies it into one of the user-determined categories. There are several important properties to be satisfied by the mapping function for visual understanding. First, the function should produce good representations of the visual world, which will be able to recognize images independently of pose, scale and illumination. Furthermore, the designed artificial vision system has to learn these representations by itself. Recent studies on Convolutional Neural Networks (ConvNets) produced promising advancements in visual understanding. These networks attain significant performance upgrades by relying on hierarchical structures inspired by biological vision systems. In my research, I work mainly in two areas: 1) how ConvNets can be programmed to learn the optimal mapping function using the minimum amount of labeled data, and 2) how these networks can be accelerated for practical purposes. In this work, algorithms that learn from unlabeled data are studied. A new framework that exploits unlabeled data is proposed. The proposed framework obtains state-of-the-art performance results in different tasks. Furthermore, this study presents an optimized streaming method for ConvNets’ hardware accelerator on an embedded platform. It is tested on object classification and detection applications using ConvNets. Experimental results indicate high computational efficiency, and significant performance upgrades over all other existing platforms

    An Analysis of the Connections Between Layers of Deep Neural Networks

    Full text link
    We present an analysis of different techniques for selecting the connection be- tween layers of deep neural networks. Traditional deep neural networks use ran- dom connection tables between layers to keep the number of connections small and tune to different image features. This kind of connection performs adequately in supervised deep networks because their values are refined during the training. On the other hand, in unsupervised learning, one cannot rely on back-propagation techniques to learn the connections between layers. In this work, we tested four different techniques for connecting the first layer of the network to the second layer on the CIFAR and SVHN datasets and showed that the accuracy can be im- proved up to 3% depending on the technique used. We also showed that learning the connections based on the co-occurrences of the features does not confer an advantage over a random connection table in small networks. This work is helpful to improve the efficiency of connections between the layers of unsupervised deep neural networks

    Diverse Semantic Image Editing with Style Codes

    Full text link
    Semantic image editing requires inpainting pixels following a semantic map. It is a challenging task since this inpainting requires both harmony with the context and strict compliance with the semantic maps. The majority of the previous methods proposed for this task try to encode the whole information from erased images. However, when an object is added to a scene such as a car, its style cannot be encoded from the context alone. On the other hand, the models that can output diverse generations struggle to output images that have seamless boundaries between the generated and unerased parts. Additionally, previous methods do not have a mechanism to encode the styles of visible and partially visible objects differently for better performance. In this work, we propose a framework that can encode visible and partially visible objects with a novel mechanism to achieve consistency in the style encoding and final generations. We extensively compare with previous conditional image generation and semantic image editing algorithms. Our extensive experiments show that our method significantly improves over the state-of-the-art. Our method not only achieves better quantitative results but also provides diverse results. Please refer to the project web page for the released code and demo: https://github.com/hakansivuk/DivSem

    Clustering Learning for Robotic Vision

    Get PDF
    We present the clustering learning technique applied to multi-layer feedforward deep neural networks. We show that this unsupervised learning technique can compute network filters with only a few minutes and a much reduced set of parameters. The goal of this paper is to promote the technique for general-purpose robotic vision systems. We report its use in static image datasets and object tracking datasets. We show that networks trained with clustering learning can outperform large networks trained for many hours on complex datasets.Comment: Code for this paper is available here: https://github.com/culurciello/CL_paper1_cod
    corecore