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ABSTRACT

Dundar, Aysegul Ph.D., Purdue University, May 2016. Learning from Minimally Labeled

Data with Accelerated Convolutional Neural Networks. Major Professor: Eugenio Culur-

ciello.

The main objective of an Artificial Vision Algorithm is to design a mapping function

that takes an image as an input and correctly classifies it into one of the user-determined

categories. There are several important properties to be satisfied by the mapping func-

tion for visual understanding. First, the function should produce good representations of

the visual world which will be able to recognize images independently of pose, scale and

illumination. Furthermore, the designed artificial vision system has to learn these represen-

tations by itself. Recent studies on Convolutional Neural Networks (ConvNets) produced

promising advancements in visual understanding. These networks attain significant perfor-

mance upgrades by relying on hierarchical structures inspired by biological vision systems.

In my research, I work mainly in two areas: 1) how ConvNets can be programmed to learn

the optimal mapping function using the minimum amount of labeled data, and 2) how these

networks can be accelerated for practical purposes.

1) The task of labeling data for training deep neural networks is daunting and tedious

work. It requires millions of labels to achieve the current state-of-the-art accuracy. The

dependency on large amounts of labeled data can be mitigated by exploiting hierarchical

features via unsupervised learning techniques. Unsupervised learning algorithms explore

patterns in datasets consisting only of input data without labeled targets. It is believed that

this is akin to how humans learn to recognize objects, because unlike traditional computer

learning algorithms, humans do not need thousands of examples of an object to learn it. In

this thesis, algorithms that learn from unlabeled data are studied, and state-of-the-art results

on common benchmarks are achieved.
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2) The applications of ConvNets exist in autonomous robots, security systems, mobile

phones, and automobiles where high throughput of the feed-forward evaluation phase and

power efficiency are important. As a result of their wide applicability, many custom hard-

ware accelerators for ConvNets have been proposed. In this thesis, an optimized streaming

method for ConvNets’ hardware accelerator on an embedded platform is presented. The

proposed method utilizes maximum computational resources available based on a novel

scheduled routing topology. This system is tested on object classification and detection

applications using ConvNets as well as a template matching algorithm for tracking objects

in real-world scenarios. Experimental results indicate high computational efficiency, and

significant performance upgrades over all other existing platforms.
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1. INTRODUCTION

Neural computation is a science that aims at modeling the brain and studying the design

and construction of neurally-inspired information processing systems. This area of study is

interesting because it can help us understand how the brain works as well as aid in solving

practical problems by using algorithms inspired by the brain. This thesis aims at the latter:

it advances image classification algorithms by taking inspiration from biology - specifically

the human virtual cortex.

Neural computation is an interdisciplinary field which utilizes biology, machine learn-

ing, statistics, optimization and probability theory to create high-functioning systems. Ma-

chine learning, also known as artificial intelligence is “a field of study that gives computers

the ability to learn without being explicitly programmed” as defined by research pioneer,

Arthur Samuel [1]. Such learning is designed to mimic the way in which mammals learn

via rewards and punishments as opposed to traditional explicit programming, which relies

on the programmer to come up with the algorithm. Society already widely benefits from

machine learning algorithms through spam filters, auto-corrections of search engines and

voice recognition, to name a few. Solving such problems requires mapping an input pattern

to an output value which then predicts the category of the input. For example, for visual

understanding, an algorithm should find a mapping function which translates image pixels

into a label such as the category of the object the pixels belong to.

To learn such mappings, there have been a number of machine learning algorithms

proposed. These algorithms are intended to function by identifying the relations between

an input and an output via analyzing a large number of examples of correct input and

output pairs. Such algorithms are expected to understand the relationship between input

and output pairs and to be able to predict the correct output value for a novel input that

they have not seen yet. The initial conception of machine learning algorithms goes back to
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of signal from its neighbors. Similarly the first machine learning algorithm, ‘Perceptron’,

was designed to look for a pattern through its connections (Figure 1.2). Perceptrons are

trained with specific machine learning algorithms to predict the values of weights (w).

These weights are multiplied with input features in order to make a decision whether a

neuron will fire or not. Similarity between the biological and artificial neuron (perceptron)

is obvious when Figure 1.1 and Figure 1.2 are compared.

The perceptron algorithm is limited to learning linear functions. It was designed to

solve the binary task of discriminating between two linearly separable classes. Currently,

machine learning algorithms are utilized to understand images, segment objects, gener-

ate captions that summarize image contents, play atari games, and to recognize speech.

For such complex tasks, many attempts have been made to design hand-crafted feature

extraction before the features are fed to a machine learning algorithm. Designing feature

extraction by hand is arduous and must be redone for each new problem, but better recogni-

tion systems can be built by relying more on the data to come up with an appropriate set of

features rather than on the designer. For complex tasks like image understanding, building

features by hand is particularly difficult.

Today, the human task of designing hand-crafted features has been superseded with the

manual task of labeling data. To create current state-of-the-art systems, enormous amounts

of labeled data are needed. The task of labeling data for training a machine learning algo-

rithm is still daunting and tedious. The reliance on large amounts of labeled data can be

mitigated by exploiting hierarchical features via unsupervised learning techniques. Unsu-

pervised learning algorithms explore patterns from datasets consisting only of input data

without labeled targets. It is believed that this is akin to how humans learn to recognize

objects, because unlike traditional computer learning algorithms, humans do not need thou-

sands of examples of an object to learn it. It is now commonly believed that an advanced

ability to mimic human visual systems through Artificial Intelligence will result from fur-

thering research on unsupervised learning algorithms. In this thesis, we will study algo-

rithms that learn from unlabeled data.
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Another research topic designed to advance the ability of machine learning applications

is acceleration of the speed of comprehension. Recent findings reveal that a key factor of

successful algorithms is their scalability. Algorithms that can learn large number of features

are significantly better performers. Currently, state-of-the-art object recognition networks

have around 140 million neurons [4] which is similar to the number of neurons we have in

our visual cortex [5]. However, these networks are extremely computationally heavy for

real-time processing of images on general purpose processors. Replication of biological

parallel processing systems needs to be explored in order to create networks that can run

in real-time at speeds similar to biological neural networks. In order to provide real-time

applications, researchers work extensively to reduce the size of the mapping functions, and

to implement custom hardware that are specialized to run these specific functions. In this

thesis, we will investigate different approaches for accelerating the run time of ConvNets.

The result of this work provides a system that combines a custom hardware and a custom

compiler for ConvNets that can run applications of ConvNets in real-time.

1.1 Overview of Contributions

There has been extensive research on learning feature hierarchies in supervised, semi-

supervised and unsupervised manners for image understanding tasks. Improvements can

be made to unsupervised learning algorithms that can scale up the number of categories

that a machine can learn to the hundreds of thousands, with the goal of making the output

of unsupervised learning comparable and eventually superior to that of supervised learn-

ing algorithms. Currently, researchers generally address machine learning problems by

collecting large amounts of data for each task which results in a high level of ConvNets

performance. However, the research community recognizes that a large breakthrough lies

in the ability to use unlabeled data, which is freely available in abundant quantities.

In this thesis, we investigate the use of unlabeled data in the context of ConvNets. We

show that the accuracies obtained with unsupervised learning algorithms can be greatly

improved by modifying them to work better with ConvNets. Furthermore, some of the
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connections in the networks can be removed which enables unsupervised learning algo-

rithms to better scale-up. This also allows ConvNets to conduct significantly faster image

processing.

Another important issue is the need for fast algorithms that can be used in real-time

applications. When an input is sent to a system for categorization and detection, users often

may need the output immediately. In this thesis, we investigate different approaches to the

acceleration of ConvNets. We propose a custom library for a hardware accelerator that can

provide significant acceleration and energy efficiency during ConvNet image processing.

We showcase the proposal by building applications that process videos and detect objects in

real-time for each frame. Our results indicate high performance efficiency, and outperform

all other existing platforms while running these applications.

1.2 Outline

This thesis will proceed as follows:

Chapter 2: Background. This chapter covers background material on learning rep-

resentations for images. We discuss established ConvNets which have shown promising

results in the field of visual understanding. There are many components of ConvNets that

provide networks with scale and distortion invariance. Such invariances are essential for

general object recognition tasks. In this chapter, we highlight these components as well

as the inspiration taken from biological systems on which these components are modeled.

We present different learning algorithms and place an emphasis on the investigation of su-

pervised and unsupervised learning algorithms. The first essential component of our work

will be to utilize unsupervised learning algorithms in ConvNets and the second will be to

accelerate ConvNets by studying their components.

Chapter 3: Convolutional Clustering for Unsupervised Learning. This chapter pro-

poses a pipeline for learning neural networks when there is very little labeled data. This

work is built on the unsupervised learning algorithm known as k-means clustering. Through

extensive analysis, we propose a refined version of an unsupervised clustering algorithm.
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Another major contribution of this work is to learn sparse connection matrices between

ConvNet layers by forcing sparser groups of features to map into the feature of next layer.

In other words, while scaling up a network, the number of parameters can be exploited as

the number of layers increases. We can attack this problem by limiting the connections

between layers, e.g. by removing some connections. In such a scenario, it is important

to determine which connections are the best to remove. We introduce a learning set-up

which learns these connections with a backpropagation algorithm. Our experiments show

that the proposed algorithm outperforms other techniques that learn filters unsupervised.

Specifically, we obtained a test accuracy of 74.1% on STL-10 and a test error of 0.5% on

MNIST. Furthermore, we test different initialization methods for ConvNets including the

unsupervised pre-training technique. We run out experiments on a large dataset. Our re-

sults show that the initialization weights wash out with large datasets, and all the networks

that are initialized with different methods converge to a similar training speed and overall

performance.

Chapter 4: Context Augmentation for Learning. While aiming to learn mapping

functions from images to create low-level predictions with small amounts of labeled data,

a question that emerges is whether learning algorithms fully use the information that are

available in the images. For instance, can we increase the dataset by modifying the images

while keeping the identity of the objects the same? In this chapter, we study the effect of

background in the task of image classification. Our results show that changing the back-

ground in training datasets can have drastic effects on testing accuracies. We also enhance

existing augmentation techniques by facilitating augmentation through the segmentation

of foreground objects. The findings of this work are important for increasing accuracies

when only a small dataset is available, for creating datasets, and also for creating synthetic

images.

Chapter 5: Embedded Streaming ConvNets Accelerator. Developments in ConvNet

optimizations and increased efficiency in the implementation of ConvNets have resulted in

an increased accuracy of many tasks, including object classification and detection. As a

result, ConvNets have become particularly useful for applications in autonomous robots,
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security systems, mobile phones, and automobiles, all of which require high-accuracy real-

time execution. ConvNets are, however, very computationally expensive due to the fact that

the convolution operations they perform on images spend over ninety percent of their time

being processed by the filters. There are two methods to accelerating ConvNets. The first

is to reduce their size, thus removing unnecessary parameters which results in a significant

reduction in computational calculations. The second is to exploit parallelisms in different

hardware architectures such as CPUs, GPUs, and custom hardware. We review several

such algorithms that were created to speed up ConvNets. We implement some of these

algorithms for generic datasets and explain the results in this chapter.

Furthermore, this chapter explores custom hardware for accelerating ConvNets. Our

work combines a streaming method with the hardware implementation to uncover different

levels of parallelisms within ConvNets. The streaming method acts as a compiler, trans-

forming high-level representation of ConvNets into operation codes to execute applications

in a hardware accelerator. The proposed system fully explores weight level and node level

parallelizations of ConvNets and achieves a peak performance of 247 G-ops while consum-

ing less than 4 watts of power. In this chapter, we present the hardware architecture and our

proposed streaming method. Our results indicate high performance efficiency, and superior

performance to all other presented platforms.

Chapter 6: Applications of the ConvNets Accelerator. This chapter showcases the

presented hardware from the last chapter with different applications. We test our system

with ConvNet applications on object classification and object detection in real-world sce-

narios. Furthermore, our hardware system can be used for generic image processing ap-

plications which use convolution-like data flow. For example, convolution operations can

be replaced with sum-of-absolute- differences (SAD) or sum-of-square-differences (SSD)

operations, widely used in tracking and motion estimation algorithms. In this chapter, we

replace the convolution operation with similarity-matching-ratio (SMR) and showcase the

flexibility of our proposed system. SMR is an algorithm we propose which achieves state-

of-the-art results on challenging video sequences. We introduce the SMR algorithm, run it

on our hardware system, and achieve real-time tracking in videos. Our results indicate high
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performance efficiency, and superior performance to all other presented platforms which

run these applications.

Chapter 7: Conclusion. This chapter concludes the dissertation with a summary of

the main contributions.

1.3 First Published Appearances

Much of the work presented here has appeared first in other publications. The results of

Chapter 3 appeared in [6], though here a new section with experiments on a large dataset is

added. Chapter 5 includes the hardware accelerator that first appeared in [7] and extended

in [8]. Finally, our work in Chapter 6 which showcases the hardware accelerator with

different applications has been first demonstrated in [9] and [8]. Furthermore, the tracker

that is accelerated through the same architecture has appeared in [10].
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2. BACKGROUND

In this chapter, we will cover the building blocks of Convolutional Neural Networks

(ConvNets) and important components of learning algorithms that we will re-use frequently

in this thesis.

2.1 Representation Learning

Machine learning algorithms are designed to learn mapping functions which can predict

the correct output of given input patterns. For each task, specific algorithms and specific

mapping functions are utilized based on the prior knowledge we have about the given task.

In this thesis, we will concentrate on the problem of visual understanding. Prominent re-

searchers in the field of visual understanding have concluded that objects do not change

identity based on their pose, scale, and illumination. Therefore, while designing the map-

ping function, the first problem to be addressed is how we can produce good representations

of the visual world and create mapping functions which will be able to recognize images

independently of pose, scale and illumination. Furthermore, we must determine how an ar-

tificial vision system can learn these representations by itself. While considerable progress

has been achieved, these questions are still open for more research and discussion.

It is commonly accepted that good internal representations for artificial vision problems

are hierarchical. Images are composed of objects and these objects are composed of parts.

The parts are composed of motifs and finally, the motifs are composed of edges. Therefore,

artificial vision systems should have multiple stages of representations in a hierarchical

manner. Interestingly, such a hierarchy also exists in the mammalian visual cortex [11–14].

Deep neural networks are functions that are particularly well suited to represent hier-

archical signals, as they naturally decompose into a hierarchy of simpler linear functions.

These neural networks range from fully trained ConvNets [15] to SIFT and SURF fea-
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ture extractors [16, 17] and hierarchical models of the visual cortex (HMAX) [18–20]. We

elected to use existing ConvNet architecture because their greater similarity to biologi-

cal systems make them more accurate than previously existing models. In recent years,

ConvNets have significantly advanced the execution of many tasks including object classi-

fication [15], object detection [21], scene segmentation [22], and action recognition [23].

This thesis shows how ConvNets can be programmed to learn from unlabeled data and also

how they can be accelerated. This chapter introduces ConvNets. Section 2.2 explains the

architecture of ConvNets. Section 2.3 describes different kinds of learning algorithms to

predict the weights of ConvNets.

2.2 Convolutional Neural Networks (ConvNets)

Because biological visual systems are so advanced, there has been extensive effort to re-

verse engineer them. In recent years, ConvNets that have hierarchical structures inspired by

biological vision systems have produced promising advancements in visual understanding.

The building blocks of ConvNets are complex. There are many components of ConvNets

that provide the networks with scale and distortion invariance. Such invariances are essen-

tial for general object recognition tasks. We will highlight these components, as well as the

inspirations taken from biological systems.

ConvNets are powerful tools that use hierarchical layers and filters to extract meaning-

ful features from objects in images. ConvNets consist of multiple layers of convolutions,

each comprised of ten to a hundred or more filters. Figure 2.1 describes the most common

ConvNet structure in which each convolution is followed by a pooling (typically max-

pooling), and a non-linearity operation (usually a rectified linear unit - ReLU [15]). The

last layer is usually a linear classifier followed by softmax regressor. Softmax regressors

translate the set of inputs into a set of probability distributions which predict the object

labels contained in an input image. Each of these operations are explained more in depth

herein. Next we will elaborate on each of these operations and reveal how each component

functions in relation to the greater ConvNet system.
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sometimes referred to as simple cells of the mammalian visual system. Another important

characteristic of local connections is that they decrease the number of parameters that are

needed to be trained. It forces weight sharing, which increases the generalization ability

of ConvNets. When there is freedom in the parameters, the network can learn noises in

the images or the details that do not matter, but when the parameters are limited to local

connections, the network is forced to summarize the images within the confines of a few

parameters.

With the recent success of ConvNets, there has been great interest in exploring the

kinds of features these architectures learn. It is possible to look at the first layer filters to

understand what kind of selectivity such filters have. In fact visualizing the first layer filters,

ConvNets usually learn edge detectors similar to Gabor filters [25]. On the other hand, for

the higher layers, looking at the filters does not give any visual information. Because of

this, different visualization algorithms are proposed [25–27]. Instead of looking at the

filters, these algorithms look at the outputs of the convolution layers. For high values in the

output maps, they go backward through the network and perform deconvolution operations

with the filters. Figure 2.3 is a screenshot from an application we built which works with

camera and displays which specific features activate each neuron. A pre-trained network

processes the camera images and displays the mid-level feature maps (on the right), and the

predicted categories of the images (below the image). By clicking on a mid-level feature

map, you can zoom in to the feature map for better visualization. By going backward from

that feature map to the input, you can see what part of the input feature is extracted by its

corresponding filter (grey image below the input). For example, in this screenshot from

Figure 2.3, a neuron in the fifth layer of ConvNet is displayed and this neuron’s activation

is back-propagated to the input image. This shows that this neuron is activated by the dog’s

face. From the analysis with visualization techniques [25], we also observe that while

the first convolution layer extracts simple features like edges and curves from images, the

convolution operations in the subsequent layers extract more complex shapes because they

extract features from the output maps of previous layers.
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or a set of overlapping squares, and the maximum value is outputted for each square. This

operation eliminates non-maximal values and reduces computation for upper layers. It

gives robustness to ConvNets by providing a form of translation invariance, however the

exact locations of the features get lost in the process.

The output maps of the pooling operations have inputs that are the direct outputs of

convolutions, but cover a larger receptive field than that of simple cells. They are thus

referred to as complex cells of the mammalian visual system because they are selective of

a particular feature in a large receptive field.

Non-linearity Layer

A non-linear layer usually follows a pooling layer. Non-linearity operations increase

the capability of a network to separate high dimensional inputs because without a non-

linearity a composition of linear functions is merely a linear function, which has limited

power to encode information.

Recently, the rectified linear unit became the most popular non-linearity operation be-

cause it provides fast convergence during training of ConvNets. This operation is basically

a thresholding operation with a threshold equal to zero. This operation is similar to the

activation mechanism in biological neurons. A biological neuron is activated if the electri-

cal potential inside the neuron reaches a certain threshold which is the similar case in this

layer.

Linear Layer

A linear layer (linear classifier) is usually used at the end of ConvNets after convolu-

tional layers. Convolutional layers which include convolution, pooling, and non-linearity,

are called feature extractors. In the end, these features are fed to a linear classifier in order

to draw the classification decision boundaries. The linear classifier performs matrix multi-

plication operation. It does not use local connections as convolution operation. Therefore,

it does not provide with translation invariance. Because a linear classifier is connected
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to all activations in the previous layer rather than only to a local region in the input, it is

also called a fully-connected layer. To summarize, linear classifiers make a classification

decision based on the linear combinations of the features extracted from images.

Softmax Layer

A softmax operation is a generalization of the logistic function that translates the set of

inputs into a set of probability distributions. This function is used in various probabilistic

multiclass classification methods. It is appropriate to use softmax regression classifier when

the classes are mutually exclusive. For example, when the task is classifying an image

into three different classes: cat, dog and fish, the image can be belong to only one of

these categories. The softmax operation, also called normalized exponential, squashes a

N-dimensional vector to values in the range of (0, 1) that add up to 1. Each value is the

predicted probability of the input belonging to the corresponding class in the N-dimensional

vector.

2.3 Learning: Parameter Estimation

In the previous section, we examined the architecture of ConvNets, which use many

layers and filters to extract meaningful features from objects in images in a hierarchical

manner. Both these filters and the linear layer weights are trainable parameters and need

to be learned for each task. There are three different ways of learning the parameters of a

mapping function; supervised, semi-supervised and unsupervised learning algorithms. In

this section, we will examine how ConvNets utilize these different methods.

2.3.1 Supervised Learning

Supervised learning is the task of learning a mapping function from labeled training

data. The training data consist of a set of input and desired output pairs. A supervised

learning algorithm infers a mapping function by analyzing the input-output pairs. It at-
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tempts to minimize the error between the desired output of an input and the output that a

mapping function actually produces. The purpose of this algorithm is to be able to pre-

dict correct outputs of given novel inputs that are not included in the training data. In this

setting, let’s assume a training set with N training samples, {xn, tn}, where xn is an input

example and tn is a correct output or target value, or a label if this is an object recognition

task. tn ∈ {1, ..., K}, while K is the number of categories in the task. We can write the

loss function as:

yn = f(xn; θ) ∀n ∈ {1, . . . , N}
l(f ; xn, tn, θ) = l(f(xn; θ), tn) ∀n ∈ {1, . . . , N}

L(f ; x, t, θ) =
∑

n∈{1,...,N}
l(f ; xn, tn, θ)

(2.2)

where f is a model with trainable parameters θ, l is a loss function which captures the

per-sample error to be minimized, and L is the global loss function which is the sum of per-

sample error for each sample in the training set. L is the function that is try to minimized

by supervised learning algorithms by updating the values of θ.

For example, with given input, x, and output, t, a simple function like linear function,

f(x) = ax+ b = t, can be learned. The parameters a and b are trainable parameters θ and

can be predicted by minimizing the loss function such as the sum of differences between

f(x) and y. While this is a very simplified problem and θ that minimizes the loss function

can be calculated by linear algebra, for more complicated functions of f(x), optimization

techniques are used.

By choosing a f and l differentiable, the optimization can be solved by gradient descent

procedure. Since ConvNets have many layers, each layer is trained with a backpropogation

algorithm in conjunction with Stochastic Gradient Descent (SGD) algorithm. Backpro-

pogation algorithm is an abbreviation for backward propagation of errors. It calculates

the gradient of the ConvNet in relation to the ConvNet’s modifiable weights. After each

training sample or a batch of samples, SGD algorithm immediately updates the param-

eters online, without going through all the examples. Although SGD approximates the
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This generalization ability is related to the concept of overfitting and underfitting phe-

nomenon which we will cover in this section. Suppose the mapping function that is de-

signed to be trained has very few parameters. It will be unable to learn the data points

because of its limited capacity which results in an underfitting problem. Basically, when

the mapping function is simple (e.g. liner function in Figure 2.4(a)), the function has an

insufficient number of parameters to represent the data points. When there is the problem

of underfitting, both the training and testing accuracies will be low. On the other hand, if

the mapping function is complex (e.g. fifth order function in Figure 2.4(b)) and there is not

enough labeled data, there can be many ways for the function to fit perfectly with the data

points. However, learning the data points correctly does not mean that the function learned

to generalize and can predict the correct output of a novel input. This means the mapping

function overfits the data. The training error is zero, but the testing error will be high. For

example, when more data points are added, as in Figure 2.4(c), it is obvious that the learned

function in Figure 2.4(b) was completely wrong.

When underfitting happens, the number of trainable parameters should be increased.

When overfitting happens, there are two ways to address it: by decreasing the number of

parameters in the function, or by collecting more data. Unfortunately, artificial vision is

a complex problem and the number of parameters to represent the visual world is in mil-

lions. In fact, the current state-of-the-art image recognition networks are designed to have

millions of parameters and are trained with millions of labeled images [35–37]. However,

the task of labeling data is quite expensive, time-consuming, and requires tedious work.

For example, several hundred hours were spent to create the ImageNet dataset [35] which

includes a thousand categories. Thousands of hours would be needed to scale up the num-

ber of categories. To circumvent this problem, the research community recognizes that a

large breakthrough lies in the use of unlabeled data which is freely available in abundant

quantities.
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2.3.2 Unsupervised Learning

Unsupervised learning is a type of machine learning algorithm that explores patterns

from datasets consisting only of input data without labeled targets. Since the data is unla-

beled, there is no error or reward signal to evaluate a potential solution. Therefore, there

is an important debate in the research community about what is expected from an unsuper-

vised learning algorithm and how to measure its success. Since an unsupervised algorithm

does not know what kind of outputs are expected from it, how can it find the mapping

function that produces outputs?

Currently, the common way to utilize unsupervised learning algorithms is to reduce the

dimensions of inputs by exploring similarities of inputs and grouping these similarities.

For example, in a classification task, after an unsupervised learning algorithm extracts im-

portant features, the inputs belong to the same classes are expected to be similar to each

other in feature dimensions. It should be possible to look at the euclidian distance of the

input features to decide which ones belong to the same classes. For this reason, a classifier

is trained with inputs which are the features extracted from inputs by unsupervised learn-

ing algorithms. The training of the classifier is supervised and requires correct input-target

pairs, however, because the unsupervised learning algorithms do the main job of moving

the inputs in the feature space close to each other, few labeled data is required for the super-

vised training. Based on this usage, the success of an unsupervised learning algorithm is

measured by the usefulness of the features that it extracts from inputs. Since these features

are used in the classifier with labeled data, the accuracy of this training gives us an idea

about the performances of the unsupervised learning algorithms.

Unsupervised learning is a very hot topic right now, because even though there have

been great successes with supervised learning algorithms, the research community is aware

that the scales that can be obtained with supervised learning algorithms are limited. Further-

more, supervised learning algorithms are not the way mammals learn to recognize objects.

Mammals do not need thousands of examples to learn different classes. In most cases, even

a single example is enough. Therefore, it is believed that we learn most of the hierarchy in
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other parameters to be optimized for the k-means clustering algorithm. The k-means algo-

rithm clusters the data points close to the centroids under the same label as the centroids.

The algorithm then averages those points which provides us with the new centroids. This

procedure is repeated until the centroids stop moving. Figure 2.5 is a good demonstration

of the convergence. However, usually the input dimension is much higher than 2D, and we

cannot visualize the clusters.

It turns out this simple algorithm works reasonably well for clustering input patches

when the patches are pre-processed with ZCA-whitening. Input patches can be considered

data points, but in much higher dimension than the examples from Figure 2.5. For example,

if we want to train filters with size of 5× 5, we will extract 5× 5 patches from the images.

Each 5× 5 patch corresponds to a point in a 25 dimensional space. When these data points

are clustered, the centroids can be used as filters.

A variant of k-means algorithm which is sometimes called the “gain-shape vector quan-

tization” [38, 39] is used successfully to train filters from images. This algorithm mini-

mizes:

minimize
D,z

∑
i

||Dz(i) − x(i), ||22

subject to ||D(k)||2 = 1, ∀k
||z(i)||0 ≤ 1, ∀i.

(2.3)

where D is the filters that are trained and the vectors z(i) ∈ RK are called code vectors,

and ||z(i)||0 ≤ 1 means that each code vector may have at most a single non-zero element.

That means a data point cannot be belong to two different clusters from Figure 2.5. This

minimization can be optimized by alternating iteration over z and D, given by:
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(a) Patches from images. (b) Filters.

Fig. 2.6. Randomly extracted patches of images and filters trained with k-

means algorithm with the extracted patches. Filters are edge selective while

the patches that are used to train the filters are not.

Repeat until convergence:

z
(i)
k :=

⎧⎪⎨
⎪⎩
D(k)Tx(i) if k == argmaxl |D(l)Tx(i)|

0 otherwise.

D := XZT

D(k) := D(k)/||D(k)||2.

(2.4)

where z(i) is a code vector associated with the input x(i), and D(k) is the k’th column

of the dictionary of filters. x(i) is usually extracted patches from input images that are the

same size as the dictionary vectors, D(k).

Figure 2.6 is an illustration of x(i), extracted random patches from input images and

D(k), the filters that are trained with k-means algorithms using the extracted patches. After

the filters that can extract useful features from images are trained with the k-means clus-

tering algorithm, they can be used in a ConvNet architecture to encode features. These

features are used by a supervised learning algorithm to train a classifier with the labeled

data.
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However, we may need many variables to construct better networks, in which case gaussian

noise is added to the input and the network is expected to reconstruct the original image

without the noise.

For image classification tasks, the decoder is removed from the network and encoder

is used to map inputs to a feature space. These features are used by a supervised learning

algorithm to train a classifier with the labeled data.

2.3.3 Semi-supervised Learning

Semi-supervised learning algorithms use labeled data together with unlabeled data

while training classifiers. Two different learning algorithms can be combined to learn the

same parameters and one can use the labeled data while the other uses the unlabeled data.

The cost function of both algorithms are minimized when used together. For example, a

ConvNet can be combined with a decoder which is esentially an autoencoder. The encoder,

ConvNet, can be trained with the labeled data in a supervised manner. Furthermore, it can

also be trained together with the decoder to minimize the reconstruction error. There are

two different cost functions in this setting and they can be minimized jointly [42, 44].

Another interesting approach is to learn a classifier from labeled data and use this clas-

sifier to classify the unlabeled data. Typically the unlabeled data for which the classifier

is not certain about their categories are dismissed and the classifier is retrained with the

remaining unlabeled data. This approach is called self-training and has been successfully

deployed for several language processing tasks [45]. However, for images, the wrong pre-

dictions (errors) from the unlabeled data cause the accuracies to drop significantly [46].

Therefore, this approach has not been successful for image classification tasks.

2.4 Summary

In this chapter, we introduced Convolutional Neural Networks (ConvNets), a bio-inspired

neural network extension, which advanced the state-of-the-art in many vision related tasks.

We went through the ConvNet structure and explained the operational function of each
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module and its role in the greater pipeline. ConvNets have trainable, differentiable param-

eters. These parameters make the ConvNets’ end-to-end training possible with supervised

training algorithms. In principle, one can also learn these parameters with unsupervised

and semi-supervised learning algorithms that utilize unlabeled data which is freely avail-

able in abundant quantities. In this chapter, we introduced different kind of unsupervised

and semi-supervised learning algorithms.

In this thesis, we will use ConvNets to extract feature hierarchies from images. In the

next chapter, we will use clustering algorithm from unsupervised learning algorithms to

learn the parameters of ConvNets.
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3. CONVOLUTIONAL CLUSTERING FOR UNSUPERVISED
LEARNING

The task of labeling data for training deep neural networks is daunting and tedious, requir-

ing millions of labels to achieve the current state-of-the-art results. Such reliance on large

amounts of labeled data can be relaxed by exploiting hierarchical features via unsupervised

learning techniques. In this work, we propose to train a deep convolutional network based

on an enhanced version of the k-means clustering algorithm, which reduces the number

of correlated parameters in the form of similar filters, and thus increases test categoriza-

tion accuracy. We call our algorithm convolutional k-means clustering. We further show

that learning the connection between the layers of a deep convolutional neural network im-

proves its ability to be trained on a smaller amount of labeled data. Our experiments show

that the proposed algorithm outperforms other techniques that learn filters unsupervised.

Specifically, we obtained a test accuracy of 74.1% on STL-10 and a test error of 0.5% on

MNIST.

Furthermore, we test different initialization methods for ConvNets including unsuper-

vised pre-training when there is an abundant amount of labeled data. Our results show that

the initialization weights wash out with large datasets, and all the networks that are initial-

ized with different methods converge to a similar training speed and overall performance.

3.1 Introduction

Deep neural networks require massive amounts of data to be trained. In large-scale

datasets, supervised methods have been successfully trained over the past few years due to

the advances in parallel computing [36,37]. Popular datasets such as ImageNet [47] contain

more than a million labeled samples, and even larger datasets are already sought after

by researchers in the field. Further pushing the boundaries, video datasets are becoming
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increasingly important in the context of deep neural networks for event recognition tasks.

In all such cases, labeling is necessary so that a supervised training algorithm can be used.

However, the task of labeling data is quite expensive and time-consuming, requiring tedious

work. For example, several hundreds of hours were spent to create ImageNet, and thousand

of hours may be needed to annotate even the most simple video dataset [35]. To circumvent

this problem, the research community recognizes that a large breakthrough lies in the use

of unlabeled data, which is freely available in abundant quantities.

Over the last few decades, extensive research has been dedicated to learning feature

hierarchies for deep learning in the context of image understanding. Examples include un-

supervised, supervised, and semi-supervised learning. Such deep learning techniques use

hierarchy of layers, which use “filters” to extract multiple input features and “connections”

to combine extracted features together into inputs for the next layer. In earlier studies

in the field, unsupervised pre-training was required for training deep networks by super-

vised learning methods. Recent advances in Convolutional Neural Networks (ConvNets)

combined with abundant amounts of labeled data have shown great promises in object

recognition tasks to remedy this issue [48].

On the other hand, unsupervised learning algorithms, such as k-means clustering, also

increased the number of parameters in the network and achieved state-of-the-art results

when labeled data are limited. Although unsupervised learning techniques using k-means

algorithm were commonly used to train filters in several studies [49, 50], the network en-

coding structures present many similarities with ConvNets, such as the use of convolution

and pooling in each layer.

The main differences between ConvNets and unsupervised learning techniques based

on k-means applied to image recognition are the number of layers (depth) and the number of

filters (width) at each layer, and the connections among layers. ConvNets improve accuracy

by increasing network depth and width. Recent studies show that, significant performance

of ConvNets was a result of the increased depth [51]. By contrast, unsupervised learning

algorithms for deep networks were not able to scale to the same depth as conventional

ConvNets. Therefore, recent unsupervised studies use large network width and two-to-
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three layers with diminishing returns [49]. In this work, we demonstrate that learning the

connections between the layers of deep neural networks plays a crucial role in improving

the performance of unsupervised techniques.

While early work of ConvNets used to rely on a ‘non-complete’ connection scheme [52]

to keep the number of connections within reasonable bounds, the trend has changed to

fully-connected layers in order to exploit the benefits of parallel computing [37,48]. Fully-

connected layers perform a lot of potentially unnecessary operations because they connect

every feature of the previous layer to every feature of the next.

In this study, a refined version of an unsupervised clustering algorithm that allows the

filters to learn diverse features has been proposed. This is achieved by preventing the

algorithm from learning redundant filters that are basically shifted version of each others

as explained in detail in Section 3.3. Another major contribution of this work is that we

learn sparse connection matrices between layers by forcing sparser group of features to

map into the feature of next layer which has been explained in Section 3.4. We show that

the convolutional k-means clustering algorithm can provide comparable mid-level feature

hierarchies to the supervised networks with improved connection learning.

3.2 Related Work

In recent years, there has been an increasing interest to learn ConvNets filters using

unsupervised learning either in pre-training or when specifying the filter values. Earlier

work suggested to use sparse coding and sparse modeling at patch level ignoring the fact

that filters would be used in a convolutional manner [53, 54]. Such approaches result in

duplicated filters that are simply shifted versions of each others. To address this problem,

convolutional Restricted Boltzmann Machines trained with contrastive divergence [55] and

convolutional sparse coding [56] methods were proposed.

Filters using k-means algorithm have gained significant attention in recent studies be-

cause of its simplicity and its competitive results when combined with the right pre-processing

and encoding scheme [57, 58]. In these studies, filters trained with the k-means algorithm
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are applied in a convolutional manner over the input maps to extract useful features. How-

ever, there has not been any attempt to reduce the redundancy between the filters learned

with this algorithm, a problem that hampers efficiency and accuracy.

As in almost all statistical learning problems, curse of dimensionality is a known issue

in deep neural networks. In particular, studies show that k-means performs poorly after the

first layer [49]. The number of filters of the first layer have low dimensions, on the other

hand, the subsequent layers increase the number of network parameters exponentially. As

an example to the curse of dimensionality problem, if we have 32 × 32 RGB images, and

we train 96 3 × 5 × 5 pixel filters in the first layer and convolve them with input images,

we will get 96 × 28 × 28 feature maps as output. If we want to train fully connected

filters in the second layer (as in the first layer filters), we would need to train 96 × 5 × 5

filters. The k-means algorithm fails to extract distinctive features and works poorly in

such a high dimension. Therefore, for the mid level features, a smaller receptive field than

fully connected layer should be preferred [49]. In the early work of ConvNets, [52] used

parsimonious (not fully-connected) connection schemes to keep the number of connections

within reasonable bounds and to force a break of symmetry in the network. Since different

feature maps are fed with different input sets, the system is forced to extract different

features. In techniques that use unsupervised algorithms, random connection [59], and

grouping similar features [49] have been proposed; these results added additional layers

and provided some improvement but not as significant as the ones obtained with supervised

deep network.

In this work, we address the aforementioned problems by devising an optimized learn-

ing algorithm that avoids replication of similar filters. Since the filters will be used in

convolutional operation, shifted versions of filters do not provide additional information

to the feature hierarchy, and therefore should be avoided. We further propose to learn the

connections between layers via supervised learning in the context of ConvNets. The con-

nection setup uses 1D convolution across channels which is equivalent to the operation

denoted as mlpconv layers in [60]. This layer has been used to enhance the abstraction
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s
(i)
j :=

⎧⎪⎪⎨
⎪⎪⎩
D(j)Tw(i) if j = argmax

l

∣∣∣D(l)Tw(i)
∣∣∣ ,

0 otherwise,

D := WST +D,

D(j) :=
D(j)

||D(j)||2 ,

(3.1)

where s(i) ∈ R
k is the code vector associated with the input w(i), and D(j) is the j’th

column of the dictionary D. The matrices W ∈ R
n×m and S ∈ R

k×m have the columns

w(i) and s(i), respectively. w(i)’s are randomly extracted patches from input images that

have the same dimension as the dictionary vectors, D(j).

Described learning scheme trains the centroid of each cluster at the patch level, how-

ever, in ConvNets, filters are applied to images in a convolutional manner. As observed in

Figure 3.1(a), many of the centroids from the k-means training have almost the same orien-

tation and they are shifted versions of each other in space. Therefore, after the convolution

operation, they will produce redundant feature maps at neighboring locations. In the next

section, we explain the proposed modifications of the k-means algorithm (convolutional

k-means) that alleviates this problem.

3.3.2 Learning Convolutional Filters with k-means

In order to reduce the redundancy between filters at neighboring locations, we propose

a new input patch extraction method. This method significantly reduces the redundancy

in centroids produced by the k-means algorithm and keeps only the essential basis for

them. The standard k-means algorithm extracts random patches from input images whose

dimensions match those of the centroids. By contrast, the proposed method uses larger

windows as inputs to decide which patch to extract for clustering.

The windows are chosen to be two times bigger than the filter size and randomly se-

lected from the input images. The centroids of the k-means algorithm convolve the entire

window to compute a similarity metric at each location of the extracted area. The patch
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which corresponds to the biggest activation from the window is meant to be the most sim-

ilar feature to the centroid (given that ConvNets have translation invariance). Finally, the

patch at that specific location (biggest activation) is extracted from the window and it is

assigned to the corresponding centroid. The modified dictionary learning can be written as

follows:

s
(i)
j :=

⎧⎪⎪⎨
⎪⎪⎩

D(j)Tw
(i)
(x,y) if (j, x, y) = argmax

(l,m,n)

∣∣∣D(l)Tw
(i)
(m,n)

∣∣∣ ,

0 otherwise,

D := W(x,y)S
T +D,

D(j) :=
D(j)

||D(j)||2 ,

(3.2)

where D(j) is the j’th column of the dictionary that corresponds to a c× s× s 3D filter

kernel and w(i) is the window with size c×2s×2s. x and y are the top-left location index of

the input patch, and w
(i)
(x,y) is the extracted patch from the location (x, y) with size c×s×s.

When these correlated filters are removed, there is more room for new filters to learn

additional features. The filters that are trained with both k-means and convolutional k-

means algorithms are presented in Figure 3.1. As can be observed from Figure 3.1(a),

filters that are trained at the patch level with k-means algorithm have similar features but

at different locations within a patch. As an example and also highlighted in red, there are

many horizontal filters that are replicas of each other at different heights. By contrast,

the filters that are trained with the convolutional k-means algorithm are significantly more

diverse, as can be seen in Figure 3.1(b).

3.3.3 Experimental Results of Single Layer Network

We run experiments of a single layer network to analyze the effect of convolutional k-

means. In our experiments, we use the STL-10 dataset that contains 96× 96 RGB images

in 10 categories [61]. This dataset has 500 images per class for training and 800 for testing.

Additionally, it includes 100, 000 unlabeled images for unsupervised learning algorithms
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Note that to compare the effectiveness of filters that are trained with these two algorithms,

we set a large pooling size which would decrease the dimension to K × 2 × 2, and train a

single layer classifier. In the experiments, we use a learning rate of 0.1 with a momentum

rate of 0.9.

In Figure 3.2, we compare the k-means algorithm with our convolutional k-means ap-

proach. In Figure 3.2(a), we fix the filter size to 3 × 11 × 11 and change the number of

filters. We observe that the increase in the number of filters provides us with higher per-

formance for both algorithms, however, filters that are learned with convolutional k-means

always outperform the ones with k-means algorithm. Note that to achieve a similar level of

accuracy, such as 54%, the number of required filters for our approach is smaller than half

of those for k-means. In Figure 3.2(b), we fix the number of filters to 96 and vary the size

of the filters. Our approach outperforms k-means for all filter sizes.

3.4 Learning Connections

We also study a way to learn connections from one network layer to the next. Such

connections are of extreme importance as creating groups of feature maps from which

the following layer learns new features. While fully-connected layers make use of all the

features of the previous layer into the next one, we use non-complete connection [52],

which are more efficient in computation. These non-complete connections use multiple

groups, each including a limited portion of the previous layer features. We use a sparse

connection matrix that limits the local receptive field. Consequently, we can avoid the poor

performance of the k-means algorithm when the input data are high dimensional [49].

Our method makes use of supervision with limited data while learning the connection

weights between layers. The connections are described by a fully connected weight matrix

that pools over the feature maps. Therefore, a single value in the weight matrix reflects

how important that feature is for the corresponding group. To learn the relation between

maps and organize them as groups (i.e., to define their weights), we add a convolutional

layer with a predefined non-complete connection as illustrated in Figure 3.3. We attach a
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Table 3.1.

Classification accuracy on STL-10 testing set with 2 layer networks.

First Layer Connection Second Layer Accuracy

Supervised Supervised Supervised 62.5%

Unsupervised Random Supervised 64.7%

Unsupervised Random Unsupervised 65.4%

Unsupervised Supervised Supervised 66.2%

Unsupervised Supervised Unsupervised 67.1%

connection matrix to learn the filters for the next layer, and the algorithm no longer suffers

from the curse of dimensionality. Details and experimental results are presented in the next

section.

3.4.1 Experimental Results of Multi-layer Networks

We conduct experiments combining (a) supervised and unsupervised learned filters and

(b) supervised learned and random connections between layers. These experiments are

designed to analyze the importance of learning connections. We set up a 2 layer network.

The first layer has 96 filters of size 13×13. The convolutional layer is applied with a stride

of 4 and followed by ReLU. Between the first layer and second layer feature extractors,

we pre-define groups as 4 consecutive feature maps, which results in 96/4 = 24 groups.

From each group, we learn 64 filters. The size of second layer filter is chosen to be 4 ×
5 × 5, 4 comes from the choice of pre-defined non-complete connection scheme. After

the convolution with the filters, we apply a pooling operation of 6 × 6 to decrease the

dimensions. ReLU activation function follows the max-pooling operation. We use a linear

classifier with 2 layers with a hidden neuron of 512 and interleaved with dropout [62].
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the connections in a supervised manner boosts the performance for each case although the

unsupervised learning still yields better performance. Furthermore, in Figure 3.4(a), we

analyze the effect of the supervised and unsupervised learning of filters in the second layer.

The unsupervised (k-means algorithm) and supervised (backpropogation algorithm) learn-

ing algorithms show different characteristics as we increase the number of filters in the

second layer. K-means learning algorithm requires inclusion of increasing the number of

filters to yield comparable results with the supervised backpropogation algorithm. Despite

the fact that the supervised algorithm can more efficiently represent the data with fewer fil-

ters, it loses accuracy and overfits to the training set when the number of filters is increased.

By contrast, the unsupervised algorithm (convolutional k-means) performs poorly with a

low number of filters. This difference can be because the supervised algorithm is learning

the discriminative features, whereas k-means learning algorithm learns all kind of common

occurred features.

Finally, we extended the depth of the network to three to analyze whether the observed

behavior continues with bigger networks. Using a configuration similar to the second layer,

we add a third layer which includes a connection matrix that represents the connections and

another convolution layer with non-complete connections. The connection matrix in this

case decreases the dimension (size 1536× 678) in a similar manner as [36]; this alleviates

the computational bottlenecks. The other cascaded convolution layer groups each four

feature maps and learns filters with dimensions 4 × 3 × 3. This is followed by a ReLU

activation function and max-pooling 4× 4 to decrease the dimensions.

In Figure 3.4(b), we analyze the effect of supervised and unsupervised learning of filters

in the third layer. The results present a similar behavior as in the second layer counterpart.

The k-means algorithm requires to increase the number of filters to yield comparable re-

sults than the supervised backpropogation algorithm. By contrast, the performance of the

unsupervised method can be increased further by concatenating the representations com-

puted at different layers as an image feature vector for use in classification. Instead of just

using the last layer output to feed the classifier, we concatenate intermediate layer outputs



40

to feed the classifier in our final results. The improvement is possible because our model

does not overfit, as seen in other works [49, 58].

3.5 Final Classification Results

Finally, we compare our method against published state-of-the-art competing methods

on the STL-10 and MNIST datasets. For this comparison, we mainly focus on algorithms

that learn filters in an unsupervised manner. Multi-dictionary approach [49, 58] is the con-

catenation of the representations that are computed at different layers (i.e., output values)

as an image feature vector. We use the same learning parameters, pre-processing and en-

coding scheme as were used in our other experiments (Section 3.3.3).

3.5.1 STL-10

For the final classification results, we use networks based on our two and three layer

networks experiments. However, we increase the network size by replacing the stride in

the first layer with a 2× 2 max-pooling which increases the accuracy. We further increase

the accuracy by the multi-dictionary approach. In detail, for the two layers with multi-

dictionary network, we use a similar network from two layer experiment where we learned

64 filters from each 24 groups in the first layer output. We concatenate this network with

a one layer network with 512 filters. The one layer network also includes ReLU activation

and max-pooling to decrease the dimension of the output to 512×4×4. For the three layers

with multi-dictionary network, we use the network from three layer network experiment

where we created 32 filters from 192 groups. We also concatenate this network with a

one layer network with 512 filters. As in previous comparisons, the linear classifier uses 2

layers with a hidden layer of 512 and interleaved with dropout [62] with a rate of 0.5. As

observed in Table 3.5.1, the two layer network with multi-dictionary achieves an accuracy

of 71.4%. Note this value is significantly higher than all of the previously unsupervised

learning algorithm work, while the network is an order of magnitude smaller (in number
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of parameters) than the networks used in [49, 58]. With an additional layer, our algorithm

achieves an accuracy of 74.1%.

Table 3.2.

Classification accuracy on STL-10. Algorithms that learn the filters unsuper-

vised.

Algorithm Test Accuracy

[57] (1 layer) 59.0%

[49] (3 layers + multi dict.) 60.1%

[63] (3 layers ) 63.7%

[50] (2 layers + multi dict.) 64.5%

[58] (3 layers + multi dict.) 67.9%

This work (2 layers + multi dict.) 71.4%

This work (3 layers + multi dict.) 74.1%

Table 3.3.

Classification accuracy on STL-10. Supervised and semi-supervised algo-

rithms.

Algorithm Test Accuracy

[64] (bayesian transfer learning) 70.2%

[65](unsupervised pre-training) 70.2%

[66] (triplet network) 70.7%

[67] (exemplar convnets) 72.8%

[42] (semi-supervised auto-encoder) 74.8%
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Fig. 3.6. Examples of images from the MNIST dataset.

3.5.2 MNIST

We run a series of experiments on MNIST dataset. Examples of MNIST dataset images

are given in Figure 3.6. For testing, we use the standard 10, 000 test samples and use

different sizes of labeled data for supervised trainings as presented in Table 3.5.2. The

training data are randomly sampled from the entire dataset by making sure that each labels

are uniformly distributed. For the unsupervised filter learning algorithm, we use the whole

dataset, whereas for training the connections and the classifier, we only use the randomly

extracted samples. We use the same two-layer network that was used on the STL-10 dataset,

except this time we decrease the size of the hidden layer in the linear classifier to 256 and

the concatenated one layer network has 96 filters. The experimental results for this dataset

can be found in Table 3.5.2.
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Table 3.4.

Classification test error on MNIST. Algorithms that learn the filters unsuper-

vised.

Algorithm 600 1000 3000 All

[42] (auto-encoder) 8.4% 6.40% 4.76% -

[68] (constractive auto-encoder) 6.3% 4.77% 3.22% 1.14%

This work (2 layers + multi dict.) 2.8% 2.5% 1.4% 0.5%

Table 3.5.

Classification test error on MNIST. Supervised and semi-supervised algo-

rithms.

Algorithm 600 1000 3000 All

[52] (convnet) 7.68% 6.45% 3.35% -

[69] (psuedo-label) 5.03% 3.46% 2.69% -

[42] (semi-supervised auto-encoder) 3.31% 2.83% 2.10% 0.71%

[70] (generative models) 2.59% 2.40% 2.18% 0.96%

[44] (semi-supervised ladder) - 1.0% - -

3.6 Summary

We have presented a novel framework that combines the strengths of an unsupervised

clustering algorithm, k-means, and Convolutional Neural Networks when very few labeled

data are available. Our framework modifies the k-means clustering algorithm so that, when

used with ConvNets, it learns filters that are less redundant at neighboring locations. In

addition, we proposed a supervised learning setup to learn the proper connections be-

tween layers. The idea of local connectivity applied to ConvNets mitigates the curse of

dimensionality in filter learning and makes the algorithm scalable. Moreover, the proposed

framework removes the necessity of data whitening on any of the layers including the in-

put during the encoding phase (whitening is applied while learning the dictionary); which



45

makes the encoding stage very simple compared to the others [49, 63]. Our experiments

show that the proposed algorithm performs better than the state-of-the-art among the tech-

niques that learn deep neural network filters unsupervised.
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3.7 Initialization on ImageNet

Celebrated deep neural networks do not have a long history. Before 2006, initialization

techniques were insufficient for training deep multi layer neural networks. Recent advance-

ments in optimization allowed scientists to successfully train deep networks [71]. Advance-

ments have mostly included new initialization or more sophisticated training mechanisms.

In this section, we will discuss different initialization techniques and the role of unsuper-

vised learning algorithms that are used in pre-training. The main focus is to study the effects

of several initialization techniques on the performance when large amount of labeled data

are available. We experiment on these techniques on the ImageNet dataset which contains

1,500,000 images [47].

Deep ConvNets that include many layers and millions of parameters are currently

trained with first-order optimization methods due to non-convex structure of the problem

as well as the extremely large computational cost brought by second order updates. Batch

optimization of deep ConvNets which only uses the first order information is ill-behaved

due to the vanishing gradient problem [72]. The initial studies on this topic show that it is

possible to train deep networks (3-4 layers) if the network is initialized with unsupervised

pre-training [73, 74]. In these algorithms, each layer is trained in a greedy fashion using

unsupervised learning algorithms. This procedure is followed by training the complete

network with first-order optimization algorithm.

All the successful training methods introduced between 2006-2008 have the following

property in common: They initialize their networks relying on unsupervised pre-training

[41, 73–77]. Because of this, there has been an increasing interest in understanding how

and why unsupervised pre-training helps deep learning. Erhan et al. [78] observe through

extensive numerical studies that unsupervised pre-training acts as a regularizer that initial-

izes the parameters in a “better” basin of attraction of the optimization procedure. More

contemporary studies show that random initialization works fine as well, as long as they

are well-designed [79]. Several recent results challenge the commonly held belief that first-

order methods are insufficient to train deep networks with random initialization. Different
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random initialization schemes have been proposed in that direction some of which we will

cover in this section. Even though it has been suggested in several studies that unsuper-

vised pre-training is helpful, it is not currently being used in any of the state-of-the-art

models [15, 80].

3.7.1 Initialization Methods

It has been widely accepted that the starting values of the weights can have a significant

impact on the training process. In particular, it is important to make sure that weights

do not saturate in the non-linear layers. In the case of saturation, small gradients emerge

and accordingly the learning tends to be slower [81]. We summarize several initialization

techniques that are commonly used in practice:

1. Heuristic Initialization [81]: If the weights are very small/large as we go forward in

the network, the resulting output values will get exponentially smaller/larger at each

layer. This phenomenon causes vanishing or exploiting outputs due to numerical is-

sues. Therefore, the magnitude of the weights should be kept in a reasonable range

so that learning can proceed and no saturation occurs. To this extend, it is required

that the distribution of the outputs at each layer has approximately unit standard devi-

ation. This can be achieved by randomly drawn weights from a specific distribution

(e.g. uniform) with mean zero and standard deviation given as:

σw =
1√
n

(3.3)

where n is the fan-in (the number of connections feeding into the node).

2. Xavier Initialization [71]: Extensive simulations show that heuristic initialization

method that is discussed above causes the variance of the back-propogated gradients

decrease as we go backwards in the network. From a forward-propagation point of

view, the heuristic initialization method keeps information flowing with a constant

variation throughout the layers. On the contrary, from a back-propagation point of



48

view, information flows with a smaller variation at each layer in this type of ini-

tialization technique. Xavier et al. [71] proposed a normalized initialization which

approximately satisfies the objectives of maintaining activation variances and back-

propagated gradients variance as one moves up or down the network. The proposed

method uses the weights that are randomly drawn from a distribution (e.g. uniform)

with mean zero and standard deviation as follows:

σw =

√
6√

ni + ni+1

(3.4)

where ni is the fan-in (the number of connections feeding into the node) and ni+1 is

the fan-out (the number of connections leaving out of the node).

3. Normal Initialization [79]: In normal initialization technique, convolutional weights

are drawn from a standard Gaussian distribution, and the biases are set to zero. The

justification of this approach is that the total amount of input to each unit should not

depend on the size of the previous layer. Therefore, they do not easily saturate.

4. K-means Initialization: This method is a member of unsupervised pre-training in

which weights are initialized by applying k-means algorithm at each layer.

3.7.2 Results

We perform our experiments on the ImageNet dataset [47]. This dataset is very chal-

lenging including 1000 categories most of which are fine-grained visual categories as

shown in Figure 3.7. Another challenge is the size of the dataset. It includes 1,500,000

images for training and 50,000 images for testing where each image has dimensions 3 ×
256 × 256. Training networks with such high-dimensional data requires using GPUs with

optimized libraries [82]. The average time of training is approximately 7 days using GPU

(NVIDIA K40). The network architecture and the training parameters of OverFeat (the

winner of the ImageNet 2013 localization challenge [47]) are used in our experiments [4].

The network has five convolutional layers and three linear layers. The number of parame-

ters exceed 145 millions and the number of connections are about 2,810 millions.
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tested algorithms that are already implemented in the well-known GPU libraries. These

experiments were able to show us that the initialization technique has insignificant impact

once there are sufficiently large amount of labeled data. The weights from different initial-

ization techniques are washed out and after 3-4 epochs all the networks follow a similar

learning trend independent of the used initialization technique. We conclude that unsuper-

vised learning algorithms can provide a significant gain in performance when the number

of labeled samples is small.
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4. CONTEXT AUGMENTATION FOR LEARNING

Recent enhancements of deep convolutional neural networks (ConvNets) empowered by

enormous amounts of labeled data have closed the gap with human performance for many

object recognition tasks. These impressive results have generated interest in understanding

and visualization of ConvNets. In this chapter, we study the effect of background in the

task of image classification. Our results show that changing the backgrounds of the training

datasets can have drastic effects on testing accuracies. Furthermore, we enhance existing

augmentation techniques with the foreground segmented objects. The findings of this work

are important in increasing the accuracies when only a small dataset is available, in creating

datasets, and creating synthetic images.

4.1 Introduction

In recent years, ConvNets empowered by abundant amounts of labeled data have in-

creased accuracies in many tasks, including object classification, detection, and face recog-

nition [15,83,84]. However, when the training dataset is small, the ConvNets are not able to

learn the necessary features, resulting in low accuracies in these tasks. To address this issue,

several approaches such as transfer learning, unsupervised, and semi-supervised learning

have been proposed. Nevertheless, they still require additional datasets or underperform

their supervised counterparts.

In this work, we investigate the effect of the context (i.e., background) in training of

ConvNets. 500 images from a common dataset, the STL-10 dataset [61], have been parsed

as the background and the foreground objects (i.e., the object to be classified). These

segmented images allow us to improve the accuracy on test dataset and also enable us to

understand the importance of the context. Additionally, we present new augmentation tech-
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niques based on the segmentation of the training dataset into background and foreground

objects.

Our approach can be beneficial in several scenarios: i) Understanding ConvNets: The

experiments with different backgrounds combined with foreground objects give us infor-

mation about how ConvNets use background information. ii) To augment the available

datasets to improve accuracies: Especially for categories, it is hard to collect data. In these

cases, augmenting the data can lead to significant improvements in accuracy. iii) When a

new dataset is collected. iv) For synthetic image creation; To bypass the effort of labeling

and finding images, the images can be created synthetically. During this process, it is im-

portant to create backgrounds for the objects that are of interest. In this chapter, we analyze

how the context directly impacts the accuracy of the ConvNets. We present several results

showing how the user can identify such scenarios and improve dataset creation.

We analyze how the background plays a very important role in the ConvNets accuracy

when the dataset is of limited size. We also present new augmentation techniques and

enhance other commonly utilized augmentation techniques to improve the accuracy. Note

that for our analysis, we use a very small amount of labeled data, i.e., 500 images, in order

to explore how much we can advance the performance of the network when minimal data

are available. The ability to train a ConvNet using a small amount of data has an advantage

because data can be very expensive and for some categories large amounts of data may be

difficult to find.

The main contributions of this work include:

• An analysis of the context (i.e., the background) on the accuracy of a ConvNet. Using

our segmented images, we analyze the importance of the background and conclude

that the training dataset should contain a diverse set of backgrounds, in order to

facilitate stronger accuracy in the network.

• A novel augmentation technique based on the segmentation of images. When the

dataset is small, the dataset can be augmented by pre-processing each image and
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increasing the number of input images. We enhance the aforementioned techniques

with the segmented information.

The results of this study are organized as follows: Section 4.2 discusses the related

work. Section 4.3 explains the segmentation procedure. Section 4.4 and section 4.5 show

our experimental setup for different backgrounds and training details respectively. Section

4.6 presents the results. Section 4.7 reviews augmentation techniques (2D affine transfor-

mations) and proposes segmented versions of these augmentations. Section 4.8 concludes.

4.2 Related Work

In this section, we describe alternative techniques to address the problem of learning

from few data with ConvNets such as transfer learning, and techniques related to our work

such as data augmentation, synthetic dataset creation, and understanding ConvNets.

Learning with few labeled data: The features that are learned from big labeled datasets

also perform learned tasks well on other datasets which makes transfer learning a popular

method while dealing with a small dataset [85, 86]. Transfer learning occurs when Con-

vNet’s knowledge of an existing task is transferred to a new task in order to improve the

networks ability to learn the new task. Transfer learning is applied by training a network

with big labeled data and fine-tuning the classifier for the other small dataset. Despite the

success of this approach, there is still a need for big labeled datasets to train the initial

network. Furthermore, the transferred features perform poorly when the datasets, tasks, are

less similar [87]. To decrease the need for big labeled datasets, extensive research has also

been dedicated to unsupervised and semi-supervised learning algorithms which also utilize

unlabeled data (e.g. [67]. However, these approaches underperform their supervised coun-

terparts when the amount of labeled data is large, which shows that they do not efficiently

represent the necessary features.

Synthetic Dataset: One approach to bypass the need for creating a labeled dataset

manually is to create the images synthetically. Jaderberg et al. [88] successfully use a

synthetic dataset for Optical Character Recognition (OCR) systems. In order to generate
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the synthetic images, they randomly select fonts and render them with different colors

over a background. This process, known as background blending, is especially important

for scene text recognition in synthetic OCR systems. This process is an improvement to

traditional OCR techniques which fail at detecting text in scene images due to the fact that

they are tuned to work on black-and-white text and line-based printed documents. Thus,

to create a synthetic dataset for generic object recognition, a more elaborate scheme is

necessary for the background than was utilized in traditional OCR systems.

Recently, Peng et al. [89] use 3D CAD models to create a synthetic dataset for object de-

tection. While they perform experiments with different backgrounds on their detector, their

experiments are built on a pretained ConvNet [15] on the Imagenet dataset [47]. There-

fore, they do not show the importance of having a variety of backgrounds while training an

object classifier.

Data Augmentations: Data augmentation is the technique which improves the accu-

racy of ConvNets by increasing the size of the training dataset. Most augmentation tech-

niques perform a 2D local transformation on the image (e.g., rotation and translation) to

generate multiple variations of one input image [80]. This technique is commonly used to

learn invariant features [15,80,90]. To facilitate augmentation, Dosovitskiy et al. [67] use a

single image (i.e., a seed) per class to create an augmented dataset. Each image belongs to

a different category and is accompanied by hundreds of transformed versions of itself (e.g.

color, contrast). The network learns discriminative features that are invariant to some typ-

ical transformations. After the network is trained, the classifier is retrained by the labeled

samples of the recognition task.

Understanding ConvNets: With the increasing success of ConvNets, there has been

a growing interest in understanding various dimensions of its behavior such as the train-

ing process and the features that are learned. Several visualization techniques have been

proposed to analyze and investigate what kind of features are learned in different layers of

ConvNets [26,51,91]. There has also been further effort to measure the encoded invariance

of a ConvNet: invariance to 2D transformations [92] and low-level cues [89].
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Fig. 4.3. Segmented-based Augmentation Overview. a) The image is split into

foreground and background. The background is filled in. b) Each foreground

can now be combined with the infilled backgrounds which creates new exam-

ples for the training.

by Long et al. [97] and Comaniciu et al. [98], as well as by using a graph-cut-based segmen-

tation [99]. However despite their strong performance on other datasets, these algorithms

perform poorly on the STL-10 dataset. The reason for that can be that the images are small

96 × 96 and are also noisy. We decided to pursue a manual segmentation. This has two

main advantages: One, the segmentation does not contain noise that would propagate to

the augmentation, and two, it allows us to use a well-known dataset.

To speed up the process of creation and save additional information like the click posi-

tions over time as well as the final mask, we developed an interactive segmentation appli-

cation. We realized that we needed to present the same image in several sizes to the users

for the users to segment the objects properly. Several examples of the segmentations can

be seen in Figure 4.2.

4.3.3 Segmentation Augmentation

Once the images are segmented, we can alter their background to analyze their impor-

tance and create our segmentation-based augmentation (Figure 4.3). Note that since the

foreground of each image does not match the others, we need an algorithm to fill in the
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leaves only the foreground objects. Examples can be seen in Figure 4.5 (second

column).

3. Mean value of bg with fg (mean value of the removed background with the seg-

mented foreground): These images instead of a uniform gray color as background

have the mean value colors of the extracted backgrounds. Therefore, if the image

was a plane in the air, the mean value is most likely to be blue, and then the back-

ground becomes a uniform blue. Examples of these images can be seen in Figure 4.5

(third column).

4. Bg same category with fg (backgrounds from the same category combined with the

foreground objects from the same category): In this set-up, segmented foreground

objects from each category are combined with the background images from the same

category as well. Examples can be seen in Figure 4.5 (fourth column), in the first row

a segmented dog from the first image is combined with a background image from

image that belongs to a dog category. These images preserve the ‘correct label’ for

the backgrounds and the foreground objects. For segmented 500 images, 50 images

per category, this process creates 50× 50× 10 = 25000.

5. Bg all categories with fg (backgrounds from all the categories combined with each

foreground object): These images are basically all possible combinations of the seg-

mented foreground objects and the background images. For segmented 500 images,

this process creates 500 × 500 = 250000. Two of the examples can be seen in the

last column of Figure 4.5, the first one is an image of a dog with a background from

an image of a plane. The second one is a monkey with the background again that

belongs to a plane. These images look less realistic than the previous examples to

human observers because we know that a monkey can not hang in the air, and there

will not be a similar image in the test dataset. Combining the images as such provides

many examples for each category. Therefore, it may decrease the problem of the net-

work overfitting to the training dataset. On the other hand, it removes the background



62

information in a way that the network cannot take advantage of the background while

categorizing an object because the same background appears for each category.

4.5 Experimental Setup

We use the STL-10 dataset for our experiments [61]. This dataset contains 5000 training

and 8000 testing images from 10 categories. In our experiments, we use 500 of these

training images, 50 from each category. The images are RGB colors and 96× 96. We only

pre-process the images by global contrast normalization.

In the experiments, we use a 4 layer ConvNet configured as (96) 7c- 3p - (256) 5c

- 2p - (512) 3c - 2p - (10) c1 where (96) 7c denotes convolution with 96 filters each is

7 × 7. 3p denotes 3 × 3 pooling with a stride of 3. ReLU non-linearity operation follows

each convolution layer. As a classifier, global average pooling is used [60] followed by a

softmax layer.

The networks are trained with a learning rate of 0.1 and a momentum of 0.9. The train-

ing used stochastic gradient descent algorithm with a batch size of 10. For each experiment,

we repeat the training 10 times with different random seeds and provide mean value and

standard deviations of the test accuracies. For the experiments that each foreground objects

may appear with many different backgrounds, we make sure that in the same epoch (500

unique images) each foreground object and background appear only once with random

combinations.

4.6 Results on the Background

The 500 training images without any augmentation results in the accuracy of 47.42 ±
1.14%. With the 500 segmented foreground images and their filled background counter-

parts, we perform many experiments as shown in Table 4.2.

Only bg: In our first experiment, we use only the background for training. Examples

are shown in Figure 4.4. We train the network with these images by conserving the labels

of the original images. Even though we have removed the foreground objects (i.e., the
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Table 4.1.

Experiments with different combination of backgrounds (bg) with the fore-

ground objects (fg).

#images Accuracy

Original images 500 47.4± 1.1%

Only bg 500 31.3± 0.8%

Gray bg with fg 500 28.7± 1.0%

Mean value of bg with fg 500 36.7± 0.9%

Bg same category with fg 25000 54.4± 0.9%

Bg all categories with fg 250000 48.5± 1.0%

objects of the categories) from the examples, we are experimenting to see if the network

can still learn something from the background that would result in a test accuracy that is

better than chance (10%). Ships are usually in the water, planes are in the sky, and birds are

on the branches of trees. Therefore, it would not be surprising if the network achieves test

accuracy better than chance. In fact, the network correctly classifies 31.3% of the images

from the test dataset which is quite surprising.

Gray bg with fg: In the second experiment, we use the foreground objects with a gray

background. This removes a lot of information from the training dataset. Therefore, the

network performs poorly on the test dataset. In fact, it gives worse performance than the

training with only background images (28.7% as opposed to 31.3%).

Mean value of bg with fg: In the third experiment, the gray value is replaced with

the mean color of the background as can be seen in Figure 4.5-third row. It provides more

information and variety in the training dataset. The mean value is also partially adding a

background information.

Bg same category with fg: In our fourth experiment, we increase the dataset by com-

bining the foreground objects with the backgrounds from the same categories. Examples

can be seen in Figure 4.5 (fifth column). This combination preserves the correct label for
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both the foreground images and the background images while creating 25000 examples.

Another surprising result of this experiment is that the accuracies increase 15% compared

to the training with original images.

Bg all categories with fg: In the fifth experiment, we combine each foreground object

with each background object. Segmentation of 500 images gives us 500 unique foreground

and background images. Combining them creates 250000 different images. The result is

slightly better than the training with original images (48.5% as opposed to 47.4%). This

experiment is also in a way removing the background information from the dataset. Be-

cause the same background appears for each category, the network cannot take advantage

of the statistical information of the background while classifying an object during training.

From this perspective, it is similar to the experiment with gray backgrounds. On the other

hand, it also creates many examples of the foreground objects in different backgrounds and

reduces the overfitting problem.

These experiments show us the importance of the context while training ConvNets.

As they learn the foreground images, they also learn the backgrounds. Interestingly, as

evidenced in our first experiment, sometimes background information is all that is needed to

categorize some images. Another interesting finding is the significant increase in accuracy

when the data are augmented with the combinations of foreground and background images

from each category.

Finally, our last experiment shows the delicate balance between having more examples

which can potentially increase accuracy and removing background information in order

to create these examples which decreases accuracy. The result is better than the training

with original images, but is much worse than the training with the combinations of the

same label of foreground and background images. On the other hand, even though the

results are worse, we know that the network uses the foreground objects to recognize the

categories. This recognition can be useful for many applications and is still better than just

using the original images, because despite the fact that the original images use background

information, they still result in lower accuracy.
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• Translation: Images are shifted of random values which are uniformly selected be-

tween (−20, 20) pixels in vertical and horizontal directions. Segmented translation

of the images corresponds to the same operation but only applied to the segmented

foreground object with the values of {−20,−15,−10,−5, 5, 10, 15, 20} (Figure 4.6

- third and forth column)).

• Rotation: Images are rotated by a random angle between (−10, 10). Segmented

rotation of the images, similar to the previous examples, rotation is only applied to

the foreground objects with angles of {−10,−5, 5, 10} (Figure 4.6 - fifth and sixth

column)).

We also experimented with several other data augmentation methods in addition to the

above (e.g. changing the color - adding a value to the hue component in HSV representa-

tion, and changing the contrast of the whole images, changing the color of the foreground

objects and the background independently and adding Gaussian Noise), but we did not

observe any accuracy gain with these augmentations.

In our first experiment in this section, we test standard data augmentations on the orig-

inal dataset. We run experiments in 2 scenarios: 500 training images and 5000 training

images (all labeled examples from the STL-10 dataset). The network achieves an accuracy

of 47.4% with 500 training images, and it achieves an accuracy of 69.8% with 5000 training

images, without any augmentation techniques applied.

Figure 4.7 displays the influence of each data augmentation on the test accuracy. The

segmented augmentation versions increase accuracy less than their original counterparts.

In the segmented augmentations, the background stays the same. In standard augmentation

the background is also augmented which further increases variety in the training dataset.

On the other hand, the segmented and the original augmentation techniques create different

images, and they can be used together to further boost the performance.

In our final experiments, we combine all the techniques that result in improvements

when training the ConvNet with 500 images. Table 4.2 presents the results. Each row in-

cludes data augmentations from the previous rows. Note that when combined with other
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Table 4.2.

Accuracies with 500 unique examples. Each row includes the augmentation

from the previous rows.

Accuracy

Original images 47.4± 1.1%

Bg same category with fg 54.4± 0.9%

Horizontal flip 55.4± 0.7%

Translate 58.9± 0.4%

Segmented hflip 59.5± 0.8%

Recently, deep ConvNets have closed the gap with human performance in many tasks

and contain promising advances in the field of visual understanding. The problem is their

need for huge labeled datasets. The question which arises is whether the ConvNets fully

utilize the data provided to them. In this work, we observed that creating datasets which uti-

lize foreground and background objects from the same category increased the performance

of the network.

We also observed that in certain instances background may give enough information

for the network to categorize some of the objects while in other instances the network is

unable to do so with the given background information. Furthermore, we proposed new

augmentation techniques that provide accuracy increase in ConvNets. The findings of this

work are important in increasing the accuracies when only a small dataset is available, in

creating datasets, and creating synthetic images. The ability to train a ConvNet using a

small amount of data has an advantage because data can be very expensive and for some

categories large amounts of data may be difficult to find.
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5. EMBEDDED STREAMING CONVNETS ACCELERATOR

Deep Convolutional Neural Networks (ConvNets) have become a very powerful tool in

visual perception. ConvNets have applications in autonomous robots, security systems,

mobile phones, and automobiles where high throughput of the feed-forward evaluation

phase and power efficiency are important. Because of this increased usage, many FPGA-

based accelerators have been proposed. In this chapter, we present an optimized streaming

method for ConvNets’ hardware accelerator on an embedded platform. The streaming

method acts as a compiler, transforming a high-level representation of ConvNets into oper-

ation codes to execute applications in a hardware accelerator. The proposed method utilizes

maximum computational resources available based on a novel scheduled routing topology

that combines data reuse and data concatenation. It is tested with a hardware accelerator

implemented on the Xilinx Kintex-7 XC7K325T FPGA. The system fully explores weight

level and node level parallelizations of ConvNets and achieves a peak performance of 247

G-ops while consuming less than 4 watts of power. Our results indicate high performance

efficiency, outperforming all other presented platforms while running these applications.

Furthermore, this chapter includes an extensive review of related work. There are ba-

sically two approaches to accelerate ConvNets: 1) Decreasing the number of calculations

that are needed. 2) Exploring different level of parallelisms of ConvNets in different hard-

ware resources such as CPUs, GPUs and FPGAs. In the related work, we cover all these

approaches.

5.1 Introduction

Recent advances in optimizing deep networks such as dropout [103], sub-sampling

[104, 105] and efficient GPU implementations for training have enabled researchers to in-

crease the scale of ConvNets with more layers and parameters that were not previously
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practical to train. This development has resulted in increased accuracy of many tasks, in-

cluding object classification and detection [15]. As a result, ConvNets have become partic-

ularly useful for applications in autonomous robots, security systems, mobile phones, and

automobiles, which require real-time execution and high accuracy. ConvNets are, however,

computationally very expensive due to the fact that over ninety percent of the time required

for convolution operations with images is spent on processing by the filters [106].

One approach to accelerate ConvNets is to reduce their size, thus removing unnecessary

parameters which results in a significant reduction in computational calculations. Recently,

many studies show that ConvNets do no use all their capacities [107]. Whereas a small

network does not learn as good features as a bigger network, it is possible to decrease the

pre-trained big network’s size to a smaller one without loss in the accuracy. This fact shows

that big ConvNets are overly parameterized, however, this redundancy seems necessary to

solve a highly convex optimization [108].

Another line of research to accelerate ConvNets is to exploit different level of paral-

lelisms. Parallelism in ConvNets can be explored at many levels, including weight paral-

lelism (parallel sum of products computation in convolution) and node parallelism (com-

putation over multiple convolutional planes), and specific hardware architectures take ad-

vantage of a specific subset of them. Extensive research has been conducted to find the best

routing schemes of ConvNets on CPUs, GPUs, and FGPAs (custom hardware).

GPUs are becoming a common alternative to custom hardware in vision applications

because they are inexpensive and easily programmable [82,109]. In particular, while train-

ing ConvNets, GPUs provide high-speed processing of hundreds of images at the same

time. However, custom hardware can provide better performance during the feed-forward

prediction phase with less power consumption, which is necessary for embedded systems.

By developing a custom architecture and control method adapted to ConvNets, the prod-

uct of power consumption by performance can be improved. Because of these advantages,

extensive research has been devoted to custom architectures for convolutional networks or

related algorithms [110–116].
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This study presents a highly optimized control method for the scalable hardware ar-

chitecture for ConvNets. The control method acts as a compiler and transforms high-level

representations of ConvNets into operation codes for the purpose of executing applications

within a hardware accelerator. The control method takes advantage of the characteristics of

ConvNets and explores the computational power of the custom hardware.

The results of this study are organized as follows: Section 5.2 explains related work;

Section 5.2.1 covers the methods that successfully remove unnecessary parameters of ConvNets.

Section 5.2.2 describes different implementations of ConvNets on CPUs and GPUs and

custom hardware. Section 5.3 describes the architecture of the custom hardware. The

strengths and limitations of the custom hardware are presented in this section. Section 5.4

describes our control method that is optimized for ConvNets and custom hardware. Sec-

tion 5.5 gives experimental results on the performance of the system. The final section is a

comprehensive summary.

5.2 Related Work

With the recent success of Deep ConvNets in object recognition, there has been exten-

sive interest in accelerating forward and backward data processing of ConvNets. There are

basically two approaches to accelerate ConvNets. First approach, covered in Section 5.2.1,

is decreasing the network size. Second approach, studied in Section 5.2.2, is exploring

different level of parallelisms in ConvNets on different hardware resources such as CPUs,

GPUs and FPGAs.

5.2.1 Acceleration through reducing ConvNet size

A recent study shows that ConvNets do not utilize all their capacities because the study

is able to predict a big chunk of ConvNet’s parameters given only a subset of them [117].

This means that parameters of ConvNets are correlated. In other words, ConvNets store

similar information wasting computing resources. Inspiring from this work, researchers

propose different ways to remove the redundant parameters in ConvNets. One way is to re-
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move correlated parameters of pre-trained networks and retrain them (fine-tune) to recover

the original performance. The other way is to train a network from scratch in a way that is

designed to penalize redundant parameters to emerge. In this section, we will cover these

two approaches.

Reducing the size of a pre-trained network

To reduce the redundancy in ConvNet filters, some studies aim at finding appropriate

low-rank approximations of each convolutional layer filter [118, 119]. They then fine-tune

the networks until the original prediction performances are restored. The low-rank approx-

imations include several elementary tensor decompositions based on singular value de-

compositions and filter clustering methods that explore the similarities between the learned

tensors. These studies obtain a speedup of 2× by keeping the accuracy within 1% of the

original models.

Another approach to reduce the size of a network is network pruning. Network prun-

ning has been used to reduce network complexities in many studies such as optimal brain

damage [120] and optimal brain surgeon [121]. However, these approaches are computa-

tionally expensive because they prune networks based on the Hessian loss functions which

require second order derivatives. On the other hand, recent studies show that it is possi-

ble to remove parameters without any approximations or additional computations and any

losses in accuracies [122, 123]. These studies take advantage of the fact that parameters in

ConvNets are very sparse, many of them having values close to zero. They prune networks

using a three-step method. First, they train a network to learn which of its connections

are important. Next, they prune the unimportant, low-weight, connections. Finally, they

retrain the network to fine tune the weights of the remaining connections. With this recipe,

these studies reduce the number of parameters of popular networks by a factor of 10×. Fur-

thermore, removing these connections reduces the convolution operation to sparse matrix

multiplication which provides a speed-up gain by 5×.
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Learning a small network from scratch

There has been an extensive effort to learn small networks from scratch that have similar

performance with bigger networks. Jonghoon et al. [124] apply structural constraints to

conventional ConvNets in order to learn low rank, 1D separated filters. The constrain

sets 1D filters that are cascaded in across channel, vertical, and horizontal dimensions.

Therefore, a network learns separated filters instead of a standard 3D filters. This structure

while achieving a similar performance with vanilla ConvNets, uses 10× fewer parameters

and provides 2 to 3× speedup.

Another interesting approach to accelerate ConvNets is to teach a small network to

mimic a bigger one [108]. In almost any machine learning algorithms, a simple way to

improve the performance is to train many different models on the same data and average

the predictions of these models [125]. Caruna et al. [126] show that the knowledge of

an ensemble can be compressed into a single model. Inspired by this work, Hinton et

al. [108] use transfer learning to compress the knowledge of a big network into a smaller

one. They achieve many interesting results, such as small network learns so much faster

and converges to a better accuracy when it learns from a bigger network instead of correct

labels of a dataset. However, this decrease in the network size accompanies with a decrease

in the performance as can be seen in Figure 5.1.

Figure 5.1 shows an experiment we conducted by using a popular dataset called Cifar-

10 [127] with a popular network structure called network in network [60]. Big network

refers to the reference network [60], and the small network is the network that is half size

of the big network, e.g. whereas big network has 192 filters in the first layer, the small

network has 96 filters. Hard targets refers to real labels from the dataset, whereas soft

targets refer to the outputs of the big network. Therefore, when soft targets are used, an

image is processed by the big network and its output is used as the correct label while

training the small network. The intuition behind this set-up is to remove the hard constraint

that only one of the categories should be on with 100% confidence while training a network.

For example, if an image of 7 looks like 2, forcing the network to give the output as 7 with
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ing bigger models due to faster CPUs. While these networks have around 60.000 trainable

parameters in the late 1990s [52], today the networks with millions of parameters are uti-

lized to produce state-of-the-art results [109]. The rapid increase in the network sizes has

occurred in the last five years mainly because of the efficient implementations of ConNets

on parallel processors such as GPUs. The speed of optimized implementations allows re-

searchers to explore significantly higher capacity networks. Whereas the training of these

networks takes about a week on multiple GPUs [109], the feedforward real-time image

processing becomes a need for applications. This section discusses several efficient imple-

mentations of ConvNets on CPUs and GPUs.

The implementations of ConvNets are mostly dedicated to efficient convolution oper-

ations due to the fact that convolution operations with images spend over ninety percent

of their time being processed by the filters. Convolution operation takes two inputs: an

image (D ∈ RN×C×H×W ) and a filter (F ∈ RK×C×R×S). The image ranges over N im-

ages in a mini-batch, C input feature maps (e.g. C = 3 in RGB images), H height of the

image, W width of the image. The filters range over K number of filters, C input feature

maps, R height of each filter, S width of each filter. The output is also a four-dimensional

tensor O ∈ RN×K×P×Q, where N and K defined as previously, and P = H − R + 1,

Q = W − S + 1. The operation is as follow:

O(n, k, p, q) =
C∑
c=1

R∑
r′=1

S∑
s′=1

D(n, c, r − r′, s− s′)F (k, c, r′, s′) (5.1)

As can be seen from Equation 5.1, convolution operation includes seven nested for

loops. The calculations across the dimensions N and K are independent loops. The calcu-

lations across C have independent loops that need to be summed in the end.

Parallelism can be explored at many levels, including weight parallelism (parallel sum

of the products of computation in convolution) and node parallelism (computation over

multiple convolutional planes) [128]. Because the training phase involves the processing of

many input images before a weight update, parallelization across images is also explored in

several popular libraries. Note that in real-time applications this acceleration is not possible
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since the input images arrive in regular time intervals and an output is expected immediately

after each image is sent.

Parallelization on CPUs

Regarding CPUs, there have been highly optimized implementations of ConvNets [129,

130] that explore cross image parallelization with multi-threading and implementing con-

volutions as highly optimized matrix-matrix multiplications (using BLAS).

Fig. 5.2. Figure taken from [82]. Illustration of how a simple convolution can

be lowered to a matrix multiplication. N: Number of images in mini-batch,

C: Number of input feature maps, H: Height of input image, W: Width of

input image, K: Number of output feature maps, R: Height of filter kernel, S:

Width of filter kernel. The colors in this illustration represent the input feature

maps, and elements of D and F are uniquely labeled in the illustration so as

to show how each participates in forming Dm and Fm. The filter matrix Fm

has dimensions K × CRS = 2× 12, while the data matrix Dm has dimensions

CRS × NPQ = 12 × 4. Note that each element of D is duplicated up to RS =

4 times in Dm. The output matrix Om has dimensions K × NPQ = 2× 4.
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A very successful method is to lower the convolution operation to a matrix multipli-

cation. The conversion of convolution operation to a matrix multiplication is illustrated

in Figure 5.2. Even though this conversion requires multiple memory copies of the same

elements, it provides speed-up by taking advantage of highly optimized matrix-matrix mul-

tiplications libraries (BLAS [131]). Matrix multiplication is fast because it has a high ratio

of floating-point operations per byte of data transferred [82]. The ratio increases as the

matrixes get larger, meaning that the operation is less efficient if the convolution operation

is performed on a small input with a small filter. However, in ConvNets, inputs and filters

because of their three-dimensional nature produce big matrixes which make the lowering

convolution into a matrix multiplication approach appealing.

Other approaches are proposed, such as the unrolling of convolution operations (multi-

ple nested for loops) for cache-friendly memory access [132], and the linear quantization of

network weights and inputs [133]. Despite the benefits of such implementations, ConvNets

on general purpose processors are still too demanding, power-consuming, and slow to be

used for real-time applications in an embedded system environment.

Parallelization on GPUs

One of the main reason for the success of ConvNets is the fast implementations in

GPUs which have enabled researchers to increase the scale of ConvNets with more layers

and parameters that were not previously practical to train. Currently, all the models which

provide state-of-the-art performance on big datasets are trained on GPUs [36, 37, 48, 51].

While GPUs are gaining popularity in the training phase, they are not commonly present

in embedded systems. The challenges in running ConvNets on GPUs are mostly centered

on memory and communication. Different communication methods for GPUs have been

explored for the purpose of overcoming the bandwidth limitation between the host system

and GPU memory [82, 134–136]. The small local memory spaces in the GPU limit the

ability to properly store the images, as do the filter coefficients of large networks [137].

Other optimizations take advantage of processing multiple inputs for training in a mini
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batch mode [109]. However, this is not practical for real-time applications where there is a

continuous feed of input, and outputs are expected immediately.

The most successful approach to speed up convolution operation on GPUs, similar

to on CPUs, is to lower it to a matrix multiplication operation (Figure 5.2). In popular

frameworks [138,139] for training ConvNets, convolution operation has been implemented

as a matrix multiplication operation to be run on GPUs. The disadvantage of this approach

on GPUs is that forming input matrix, Dm, involves duplicating the input data up to RS

times. Sharan et. al. [82] propose a GPU implementation of convolution where the memory

copy of the duplicated inputs are hidden, allowing the matrix multiplication computation to

be limited only by the time it takes to perform the arithmetic. This is achieved by computing

a sub-matrix of results while fetching the next tiles of input and filter from off-chip memory

into on-chip caches and other memories. These implementations all benefit from the large

batch size. Batch size (N ), the number of the images for training one batch, is usually set

to 128− 256 to utilize all the resources in GPUs. On the other hand, in applications, there

is a continuous feed of input, and outputs are expected immediately (in such cases N = 1).

These implementations lose efficiency in such scenario.

Parallelization on FPGAs

Despite the fact that GPUs are becoming a common alternative to custom hardware,

custom hardware can provide better performance with significantly less power consump-

tion, which is necessary for mobile, embedded platforms. By developing a custom archi-

tecture and control method fully adapted to ConvNets, the product of power consumption

by performance can be improved enormously. Because of this, there has been extensive in-

terest in utilizing custom hardware to accelerate convolutional neural networks [140–145].

Custom hardware can uncover massive parallelism compared to CPUs. It also consumes

low power, unlike GPUs. This advantage comes from a custom implementation where a

large number of logic units, specialized to operations required for ConvNets, can operate

in parallel.
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Node parallelism provides a significant performance benefit for ConvNets [128, 140,

143] based on the fact that each convolutional plane is independent of others in the same

layer. The degree of parallelism can be increased by placing as many processing units as

silicon can hold. However, the actual performance is often limited by its memory band-

width during ConvNet computation. Since the number of connections to produce a single

output plane is much higher than the number of processing units, node parallelism neces-

sarily generates intermediate results that need to be stored in memory. Such intermediates

require frequent memory access between a host processor and memory. This causes signif-

icant overhead time when used for large-scale neural networks.

Efficient memory and operation scheduling, as well as unit parallelism, are crucial fac-

tors in ConvNet acceleration. Recently, an FPGA-based accelerator for ConvNets was

proposed, containing an analytical design scheme using roofline model [146]. This method

uses floating point operations in comparison to our study, which uses fixed point opera-

tions. Overall, our method achieves better peak performance in all of the experiments we

tested. Furthermore, our method is capable of running the whole network except the linear

layer, as opposed to only convolutional layers.

In this study, we propose a routing scheme that combines data reuse and concatenation

to reduce the memory access limitation of custom hardware. This routing scheme enables

maximum node level parallelization of ConvNets. Whereas the hardware fully explores the

weight parallelism, the control method enables the full node parallelism with available re-

sources in the hardware accelerator. Our control method acts as a compiler by transforming

a high-level representation of ConvNets into operation codes to execute applications in a

hardware accelerator. We discuss different optimizations and improvements in our control

method while running ConvNets. This study is in line with previous work [7, 147, 148]

but includes many improvements and an in-depth explanation of our methods. The initial

study [147] was based on a small FPGA; therefore, the limitation was on computational

resources rather than the memory access bandwidth. In other words, there was no need for

an optimized routing scheme. The study presented herein [148] focuses on the convolution

engine rather than the control method that runs the applications. While the recent study [7]



80

investigates memory optimizations, this method is not generic and does not utilize the re-

sources after the first iteration because of the intermediate values occupying the bandwidth.

In our work, we present a full system that combines data reuse and concatenation, and we

present object classification and detection applications that run on our system.

5.3 Embedded Streaming ConvNets Hardware Accelerator

In this section, we present the architecture of the hardware accelerator for running

ConvNets in the feed-forward prediction phase. The capabilities and limitations of this

hardware were the most important considerations when we implemented our control method.

The hardware system is implemented on the Xilinx Kintex-7 XC7K325T FPGA.

5.3.1 Architecture

The architecture of the hardware accelerator is based on [147] where the hardware is

divided into two main areas: the memory router and collections that include the operators

for processing images. Hardware operators are bundled together into a unit called a collec-

tion. All the operators and routers can be configured at run time and each module operates

independently. In other words, configuring one module does not require stalling any oth-

ers. All operators use the Q8.8 number format - which has been tested to provide virtually

identical results to 32-bit floating number format - for the feed-forward phase computation,

even though the ConvNet has been trained in 32-bit floating number format. These two

main parts, memory router and collections, are explained in the subsections below.

Memory Router

The memory router interfaces with eight high-throughput I/O ports and four collections.

It acts as a gateway to the accelerator and directly communicates with AXI bus. It is

implemented as a crossbar switch where all incoming and outgoing streams pass through

this module. Having a larger crossbar switch could ease the data traffic in the memory
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router. However, it would also cause inefficient use of logic area due to the dense grid

pipeline. In order to meet these area constraints, only essential streams are routed to the

memory router while intermediate streams are delivered to the neighboring collections.

The memory router can route incoming data streams to one or more outputs based on

the configured routing topology. Moreover, one part of the router can be dynamically

reconfigured without halting the functionality of the rest.

Collections

Hardware operators are bundled together into a single module called a collection. Each

collection contains a convolution, a max-pooling, a non-linearity module, and a stream-

adder. The presented system can hold four collections. Each convolution operation in a

collection can be configured to do 1 - 12× 12 convolution or smaller, 4 - 6× 6 convolution

or smaller, 16 - 3× 3 convolution or smaller, and so on.

Inputs and outputs appear as data streams for all modules. The output from the convo-

lution operator can be streamed into the max-pooling or non-linearity operator within the

same collection. Producing output maps for 3D convolutions requires the accumulation of

element-wise sums over multiple 2D convolved maps. To achieve this, the output of the

convolution from one collection can be streamed into the second collection where it can

be summed together with the output of the convolution from the second collection. This

process can be repeated among all collections.

5.3.2 High-throughput Data Ports

The FPGA has eight high-performance ports to DDR3 memory. These high-performance

ports tap into DDR3 memory using the AXI buses. Each AXI DMA is bidirectional and

can transfer 128-bit data words per clock cycle per direction.

ConvNets process hundreds of images with different filters and produce hundreds of

intermediate results. Therefore, the bandwidth of the system can be a significant limitation

in data transfer. Since the presented system has four collections, each capable of process-
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ing images with multiple filters, enough bandwidth could stream different images to each

convolution operator in each collection and sum all of them together in one transaction.

However, having only eight AXI ports to stream data in and out of the hardware acceler-

ator proves to be a prominent handicap. It is not possible to send unique streams of data

from memory to each convolution engine. Our method presents a novel routing scheme to

achieve the full utilization, as described in subsection 5.4.2.

5.3.3 Computational Resources

The operations used by ConvNets are implemented in the custom hardware as follows:

Convolver

The convolution operation is the basis of ConvNets. Convolution with trained filters

is used to extract useful features from the input images or from the output of the previous

layers, in which case convolution extracts more complex features.

Weights in ConvNets can be described as 4-dimensional filters: W ∈ RC×X×Y×F ,

where C is the number of input channels, X and Y are the spatial dimensions of the filter,

and F is the number of filters or the number of output channels. The output maps of the

convolution operation are called feature maps. The number of feature maps is equal to the

number of filters. For each feature map, inputs are convolved with a filter W ∈ RC×X×Y

and are described as:

Ff (x, y) = I ∗Wf

=
C∑
c=1

X∑
x′=1

Y∑
y′=1

I(c, x− x′, y − y′)Wf (c, x
′, y′)

(5.2)

assuming a stride of one where f is an index of the feature maps, I ∈ RC×N×M×F is the

input map, and N and M are the spatial dimensions of the input.
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Ff (c, x, y) =
X∑

x′=1

Y∑
y′=1

I(c, x− x′, y − y′)Wf (c, x
′, y′) (5.3)

The kernel is pre-loaded from memory and cached for the duration of the convolution.

As an image is streamed in, one input pixel results in one output pixel. This does not

include an initial set up delay that occurs due to the pipelined nature of the hardware.

Max-pooler

In the max-pooling operator, the images are divided into a set of squares p × p, and

for each square, the maximum value is outputted. This operation in practice is a non-linear

down-sampling by a factor of p. It gives strength to ConvNets by providing a form of

translation invariance. Furthermore, it reduces computations for the upper layers.

Non-linearity operator

In ConvNets, a non-linearity operation usually follows either convolution or max-pooling

operations. Non-linearity operations increase the capabilities of ConvNets to separate high-

dimensional inputs. Without a non-linearity, a composition of linear functions is itself a

linear function, which has limited power to encode information.

The Rectified Linear Unit (ReLU), f(x) = max(0; x), is one of the most widely used

non-linearity operations [15]. The ReLU operation in the custom hardware produces one

output per clock cycle.

Stream Adder

This module computes an element-wise addition of two incoming streams and pro-

duces a single stream as output. It can process element-wise arithmetics, and its main role

in the context of ConvNets is to complete the 3D convolutions by summing up multiple 2D

convolution maps from the convolution engines. This operator takes one stream from the

neighbor collection and performs operations with the other stream that comes to the collec-
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tion that contains it. The arithmetic occupies a single DSP slice but effectively processes

the accumulation of all elements in the plane at one clock cycle when used along with other

pipelined processing units.

5.4 Control Method

This hardware accelerator requires special software to interpret high-level ConvNet ab-

straction into a sequence of control instructions for configuring the connections in the ac-

celerator. This software, the control method, acts as a compiler and transforms high-level

representations of ConvNets into operation codes to execute applications within a hard-

ware accelerator. The method takes sequential descriptions of networks from the Torch

environment [139] and parses them to exploit different levels of parallelisms [128] and

optimizations.

There are three main features of the control method that significantly improve perfor-

mance:

• Across modules optimizations: Max-pooling and non-linearity operations generally

follow a convolution operation. These three operations can be cascaded. As the

input streams in, the output of the layer can be produced in a pipelined manner. This

concatenation part takes place in the network parser and will be described in section

5.4.1.

• Across images, within a module: Operations that are independent of each other can be

parallelized. However, each independent operation requires its own input and output

streams, and the bandwidth of systems becomes a major bottleneck that prevents

efficient energy flow. We propose a novel routing which combines data reuse and

data concatenation for maximum parallelization. This part is described in section

5.4.2.

• Smart configuration: For videos or a collection of images, the same network is run

multiple times on different images. The sequence of codes for configuration is cre-
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ated only in the beginning and is serialized for memory-optimized access. Caching

these sequences of codes in hardware further boosts the performance. This process

takes place in the configurator and will be described in section 5.4.3.

The hierarchy of our control method, from top down, includes: network parser, resource

allocator, and finally hardware configurator. Each part of the control method is explained

below.

5.4.1 Network Parser

The network parser explores across-module optimizations while creating a list of op-

erations needed to execute a given ConvNet. The network parser scans the sequential de-

scription of ConvNets (Torch network definition [139]) and combines the operations that

can be calculated in one collection in the custom hardware. Across-module optimizations

are obtained by cascading operations such as convolution, max-pooling, and non-linearity.

These operations in ConvNets generally follow each other; hence, these three operations

can be cascaded (i.e., the stream of the output of convolution is fed to the max-pooling

operation and the output of that is fed to the non-linearity operation). In this process, input

and output streams do not need to be sent to the memory router between each operation.

In this step, the network parser does not use any low-level information, and is therefore

independent of available resources in the custom hardware. After the list is created, it is

analyzed in the resource allocator to run as many of the operations in parallel as possible

based on the resources.

5.4.2 Resource Allocator

The resource allocator manages the hardware resources of the coprocessor and assigns

queued operations from the network parser into the collections (computing units). The

routing topology is drawn by the allocator in order to maximize the utilization of computing

power. The allocator combines data reuse and data concatenation to alleviate the bandwidth
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Fig. 5.3. Demonstration of calculating an output feature at each layer. Each

input is convolved with a different kernel and summed together.

bottleneck. This step is essential to exploiting the parallelism of ConvNets, i.e., parallelism

over multiple convolutional planes.

Overview of Convolution Operation in ConvNets

ConvNets contain hundreds of filters at each layer to extract features by convolving

inputs. Convolution with each filter includes multiple 2D convolutions and an accumulation

step:

Ff (x, y) =
∑
c

Ff (c, x, y) (5.4)

where c is the number of input feature maps and Ff (c, x, y) is the output of the 2D convo-

lution as given in Equation 5.3. This operation is depicted in Figure 5.3, where each line

refers to a 2D convolution operation and the arrows going to the same output are summed

together.

The breakdown of this operation in our system is as follows:
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1. Each convolution engine from each collection processes a 2D input feature map by

convolving it with a 2D filter.

2. The results of the convolution of the first collection are streamed into the neighbor

collection’s stream adder for summation.

3. The stream adder performs an element-wise summation of the upcoming stream from

the neighbor collection and the stream coming from the convolution operator in its

own collection.

4. The results of the stream adder go to the neighbor collection’s stream adder for fur-

ther accumulation of 2D convolutions.

There are generally not enough resources to calculate all the 2D convolutions needed

to produce one output map. Hence, the outputs of each DMA transaction (partial summa-

tion over c in Equation 5.4) are saved as intermediate values. In the next transaction, the

intermediate values are streamed into the custom hardware for further accumulation with

the outputs from the other 2D convolution operations.

Node Parallelism

The node parallelism, in this context, refers to a parallelization across images within a

module. In other words, each 2D convolution across images is an independent operation

and can be parallelized. However, each instance requires its own input and output streams.

Ideally, the parallelism is equal to the number of collections that can fit into an FPGA.

Nevertheless, due to the limited bandwidth of the custom hardware, streaming input and

output for each operation requires an optimized routing scheme for the available resources.

We combine data reuse and data concatenation to achieve maximum node parallelism.

To justify the need for an optimized routing scheme, we first calculate the utilization of

the naive approach for a system with four ports (I/O bus) and eight collections as shown

in Figure 5.4(a). Let’s say we use one convolution engine from each collection. Though

calculating one output map generally requires hundreds of 2D convolutions, the system can
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calculate the intermediate values for two output maps together. While a related routing

scheme was proposed in [7], this method only provided full utilization where streaming of

the intermediate values was not required. When intermediates are created and need further

processing, two ports would need to be used to stream them in and out, giving only 50%

utilization in general.

This work achieves optimum utilization by taking advantage of both the data concate-

nation and this routing scheme at the same time.

Concatenation of Data

The 32-bit AXI bus carries data words represented in Q8.8 format (8 bits for integers

and 8 bits for fractions) via DMA transfer. Since each word uses only 16 bits, the 16 most

significant bits remain vacant, lowering effective data bandwidth by half (Figure 5.4(a)).

Therefore, two consecutive data words can be concatenated in a single bus during the trans-

fer, which can increase the effective bandwidth. However, if data are not produced together,

a waiting time in the processing pipelines occurs due to the delay between transferring and

processing.

If two consecutive data words are produced together, and resultantly consumed to-

gether, they can be concatenated, increasing the bandwidth without causing any delay. This

routing scheme encourages concatenation because two intermediate values or two output

values are produced concurrently. Those values will also be used together later on. With

the approach from Figure 5.4(a), concatenation of outputs would not be possible since each

layer requires hundreds of convolution operations. It would therefore not be possible to pro-

duce two outputs in one cycle. However, with the approach from Figure 5.4(b)), outputs

and intermediates are created together, so they can be concatenated and brought together in

the next cycle in order to calculate the next layers’ outputs. Figure 5.4 is depicted for four

ports for simplicity. In our case, we have eight ports and multiple convolution engines, e.g.

64 - 3×3 convolution engines. This routing scheme is flexible for any number of ports and
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computational power, and provides benefits when the memory access is the limitation. It

effectively increases the bandwidth eightfold.

Note that two data words are encapsulated into a 32-bit stream (each word is 16-bit).

As soon as the stream reaches the memory router, two data words are outputted and fed to

different convolution engines.
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Fig. 5.5. The flowchart of the control method. Each instruction is scheduled as

long as resources are available. Otherwise the instructions that are scheduled

are processed. If there are not enough resources to complete the calculations

for one output, the partial output from the calculations is saved as an interme-

diate value which comes in the later transaction for further processing.
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Flow of Resource Allocator

The flowchart of the system is shown in Figure 5.5. The table containing rows of in-

structions from the network parser is scheduled row by row (as long as resources permit).

As described in subsection 5.4.2, when resources are allocated, each half of the collections

is allocated for each set of filters. As long as ports and collections are available, resources

continue to be allocated, and once one kind of resource is completely allocated, the trans-

action is performed. If the calculations have not been completed for an output feature map,

the outputs of the transaction are saved as intermediate values. In the next cycle, the system

checks if there are intermediate values that need to be processed further. If so, it allocates

resources for them as well. This routing scheme is very flexible and can process ConvNets

with any number of filters and layers.

5.4.3 Hardware Configurator

The hardware configurator is the lowest level of our control method to execute a Con-

vNet application. It provides an environment for communication between the resource allo-

cator and the custom hardware through AXI memory-mapped and high-throughput drivers.

For a given routing topology (from the resource allocator), this module produces corre-

sponding operation codes as output. It uses a static routing method so that it only has to be

determined once (since codes are generated one time at the start, and the hardware loops

over the operation sequence during actual execution).

The hardware configurator produces and serializes operation codes for coalesced mem-

ory access. The sequence of codes resides in the contiguous memory, which facilitates

DMA transfer and minimizes lead time without scatter-gather addressing. The length of

operation codes for a large-scale network is often greater than 30 Mbytes for each frame.

The high number of operations must then be directed to the accelerator, and this consumes

a large portion of transfer time within the overall execution time. An additional perfor-

mance boost can be created by caching the operation codes in the on-chip memory within

the custom logic, but this comes at the cost of an area. In this case, the hardware accelerator
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We compare the performance of our custom hardware with other platforms. We present

our custom hardware with two different configurations: our novel routing scheme (input

reuse and concatenation) and the naive routing scheme. Other platforms include Intel Core-

i7 2.5GHz CPU, NVIDIA K40, and ARM Cortex A9 processor. In our first experiment,

we run a single layer network. This experiment uses an input image of 3 × 500 × 500,

where 3 is the number of channels (e.g. RGB images). The single layer network consists

of 3 × 128 convolution operations with 6 × 6 filters, a max-pooling operation with 4 × 4

window size and a non-linearity operation. This experiment is designed to showcase the

peak performances of platforms with large image sizes and filters.

As can be seen in Figure 5.6, the performance per second of NVIDIA K40 is five times

greater than the system presented here. However, desktop GPUs have a TDP consumption

around 225 − 300 watts (245 for the NVIDIA K40), whereas our platform consumes a

maximum of 4 watts. Figure 5.7 presents the comparison performance per watt. In this

case, our implementation is 10 times better than the GPU alternative in performance per

watt. In the comparison of the novel vs. the naive routing scheme, our system reports 164

G-ops/s, while the naive approach achieves just 80 G-ops/s. The hardware accelerator with

the optimized control method is 96 times faster than the baseline embedded processor, a

dual-core ARM Cortex A9. The peak performance of the presented system is 247 G-ops/s

when the filters are larger (12× 12). In the following chapter, more experimentations with

a multi-layer network are utilized for the presented applications.

5.6 Summary

In this section, we presented a novel control method for a hardware-accelerated real-

time implementation of deep convolutional neural networks (ConvNet) on an embedded

platform. This control method achieves full utilization of the resources of the hardware

by exploiting the characteristics, architecture, and configuration of ConvNets. Our method

combines data concatenation and data reuse for the maximum speed-up. Our results show

that our system is extremely performance efficient.
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The proposed routing scheme is implemented using custom hardware with eight ports

and four collections; each has multiple convolution operations, but this routing scheme

can be uncovered in any other configuration. While specialization emerges for energy

efficiency, flexibility of the system is also important. The system presented here can run

different architectures of ConvNets, with any numbers of filters and layers, using the imple-

mented control method. Furthermore, this system can be used for generic image processing

applications which use convolution-like data flow. For example, convolution operations can

be replaced with sum-of-absolute-differences (SAD) or sum-of-square-differences (SSD)

operations, widely used in tracking and motion estimation algorithms. Additional exam-

ples demonstrating the usability of this system include SIFT, median-filtering, and video

processing, among others.

In this chapter, we also discussed different ways to accelerate ConvNets. Some of these

ways include removing correlated parameters and implementing highly efficient convolu-

tion operations. The amount of acceleration can be further increased by taking advantage

of both ConvNet reduction techniques and highly optimized ConvNet implementations, al-

though most of the time reduction in the network size causes a loss in the network accuracy.
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6. APPLICATIONS OF THE CONVNETS ACCELERATOR

In this chapter, we test our hardware system presented in the last chapter with applications

on object classification and object detection in real-world scenarios. The main components

of these applications are ConvNets with multi-layer architecture. As we mentioned in the

last chapter, our hardware system can be used for generic image processing applications

which use convolution-like data flow. For example, convolution operations can be replaced

with sum-of-absolute-differences (SAD) or sum-of-square-differences (SSD) operations,

widely used in tracking and motion estimation algorithms. In this chapter, we replace the

convolution operation with similarity-matching-ratio (SMR) and showcase the flexibility

of our proposed system. SMR is an algorithm we propose which achieves state-of-the-art

results on challenging video sequences. We introduce the SMR algorithm, run it on our

hardware system, and achieve real-time tracking in videos.

6.1 Object Classification and Detection with ConvNets

In this section, we present two different applications that we run on our system: object

classification and object detection. First, the details of the architecture and training are pre-

sented, and then the applications are explained, providing screen shots for each application.

Videos of the applications are available online1.

6.1.1 Network Architecture and Training

The network set-up has five layers of convolution, max-pooling, ReLU modules, and

three fully connected linear layers. The parameters of the network architecture are given

in Table 6.1. In the first layer, inputs are padded with zeroes to obtain the information in

1http://web.ics.purdue.edu/˜adundar/
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the borders of the images. Padding is applied to the fourth and fifth layers as well. In

the first layer, max-pooling is applied by a stride of four. The input size of the network

is 3 × 231 × 231 and the spatial size of the input of each layer decreases as we move

to the end of the network, as given in Table 6.1. The output of the network is fed to a

soft-max operation which normalizes the summation of values to one so they represent a

probability distribution. This network is trained with twenty categories, which is the size

of the network output. The network is trained in the Torch environment [139] on NVIDIA

K40.

DropOut [103] with a rate of 0.5 is employed on the fully connected layers (sixth and

seventh) in the classifier. Dropout sets the output of each hidden layer to zero with a

probability of 0.5. In this process, only half of the network is trained in each forward-

backward pass. As a result, complex co-adaptations of neurons decrease, as does over-

fitting. In the test period, outputs of neurons are multiplied by 0.5, so the whole network

contributes to the prediction.

We follow the input preparation method as [15]. It starts by cropping images that are

25×25 larger than the network’s input size, 263×263. Each image is down-sampled so that

the smallest side of the image is 263. Images are cropped from the center to obtain 263×263

size images. To avoid over-fitting and increase the training dataset, 231 × 231 random

patches are extracted from the images at each training step; some patches are randomly

flipped horizontally. Finally, as pre-processing, patches are normalized by subtracting the

mean and dividing by the standard deviation of the dataset. The same network is used for

both applications.

6.1.2 Object Classification

The first task is using the network to classify objects (i.e., assign trained classes to an

image). Figure 6.1 shows a screenshot from a video we recorded. Because an image can

have multiple objects, we display the top 2 probabilities. Images from the camera were

down-sampled to the size of 231× 231 and fed to the network. The output of the network
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is the probability distribution of each class in the image. As demonstrated in the figure, the

system is able to recognize two presented objects correctly, despite the fact that they are

not centered.

Note that when just one object is present, the second highest probability can be low or

irrelevant, interpreted as noise.

In Table 6.2, a comparison of the performance per watt of our system for this application

is presented. There is a drop in the performance in comparison to Figure 5.7 because of

the small filter sizes that decrease the weight level parallelization. However, our system

still outperforms all other presented platforms in performance per watt. In Table 6.3, the

performance numbers for each layer in the classification application are given. The number

of operations needed for each layer and the time it takes to process each layer in our system

are provided in this table. Differing numbers of filters, filter sizes, or input sizes to each

layer make a big difference in the number of computations and the overall performance.

Note that only the convolutional layers are processed in each platform because a linear

layer is not implemented in our system.

6.1.3 Object Detection

Object detection is a more complex task than simple classification since a bounding

box for the predicted object must be returned. That is, the network should predict both the

correct category and the location of the object. Also there might be multiple objects in a

scene, and these objects might not belong to any trained category.

To return the bounding box, we follow the sliding-window approach without any pre-

processing (in a similar manner as [4, 149, 150]). In ConvNets, this approach is efficient

since they share computations that are common to the overlapping regions. The output of

the network is a three-dimensional feature map, where one dimension has the information

of the probability distributions and the other two dimensions have the information of the

spatial coordinates.
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Table 6.3.

Performance per second and performance per second-watt numbers for each

layer for classification application with our implementation.

HW Accelerator (Our implementation)

Network given in Table 1 Performance

G-ops ms G-ops/s

layer 1 1.86470 15.28 122.0

layer 2 0.44827 4.27 105.0

layer 3 0.04616 0.67 69.0

layer 4 0.00739 0.23 32.1

layer 5 0.00059 0.10 5.9

Overall 2.36711 20.55 115.2

In Table 6.2, comparisons of the performance per second and per watt of our system

are presented for this application. The performance numbers for our system improve com-

pared to the classification application because of the larger image sizes and the streaming

architecture of our system.

6.2 Tracking with SMR

In this section, we replace the convolution operation with a template matching algo-

rithm for visual tracking and showcase the flexibility of our proposed system. We first

present a novel approach to visual tracking: Similarity Matching Ratio (SMR) which is

also our work. The traditional approach of tracking is minimizing some measures of the

difference between the template and a patch from the frame. This approach is vulnerable to

outliers and drastic appearance changes and an extensive study is focusing on making the

approach more tolerant to them. However, this often results in longer, corrective algorithms

which do not solve the original problem. Our work proposes a novel approach to the defini-
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Fig. 6.2. Object detection: ConvNet scans the frame in a sliding window fash-

ion. A simple post-processing is applied to show ConvNets capabilities. De-

tections above a threshold are displayed after pruning the detections in close

regions. Detections can be improved with more sophisticated post-processing

or by using multiple scales.

tion of the tracking problems, SMR, which turns the differences into probability measures.

Only pixel differences below a threshold count towards deciding the match, the rest are

ignored. This approach makes the SMR tracker robust to outliers and points that dramat-

ically change appearance. The SMR tracker is tested on challenging video sequences and

achieves state-of-the-art performance.
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6.2.1 Introduction

Visual tracking of objects in a scene is a very important component of a unified robotic

vision system. Robots need to track objects in order to interact. As such as they move

closer, robots and other autonomous vehicles will have to avoid other moving objects,

humans, animals, as they operate in our everyday environment.

The human visual system object tracking performance is currently unsurpassed by en-

gineered systems, thus our research tries to take inspiration and reverse-engineer the known

principles of cortical processing during visual tracking. Visual tracking is a complex task,

with neuroscience studies of cortical processing painting an incomplete picture, and thus

is only partially able to guide the design of a synthetic solution. Nevertheless a few key

features arise from studying the human visual system and its tracking abilities: (1) the hu-

man visual system is not limited to three-dimensional conventional objects in space, rather

is able to track a set of visual features [151]. Thus object in this section refers to a distinct

group of features in the two-dimensional space. (2) It is not necessary for humans to have

knowledge of the object class before visual tracking, and (3) humans can track an object

after a very brief presentation. Even though the human visual system does not operate with

frames it is common to desire synthetic systems to be able to track from a single frame.

Visual tracking in artificial systems has been studied for decades, with laudable results

[158]. In this study, we focus on bio-inspired visual tracking systems that can be part of

a unified neurally-inspired vision system. Ideally, a unified visual model would be able to

parse and detect an object every frame, but right now there is no bio-inspired model that

can do this in real-time [159–161]. Deep neural networks come close to this performance

when trained to look for a single object on a large collection of images [162].

A bio-inspired synthetic visual tracker is generally thought of having two outputs of the

same unified stream: one is a deep neural network classifier that is capable of categorizing

object, another is a shallower classifier that can group features into objectness. The first

deep system is used to be able to continue tracking an object as it disappears and reappears

in the scene, while the second system provides rapid grouping of local features, by tracking
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Table 6.4.

Properties of the video dataset used in this work [152].

Video Sequence

1. David 2. Jumping 3. Ped1 4. Ped2 5. Ped3 6. Car

Camera Movement yes yes yes yes yes yes

Partial Occlusion yes no no yes yes yes

Full Occlusion no no no yes yes yes

Pose Change yes no no no no no

Illumination Change yes no no no no no

Scale change yes no no no no no

Similar Objects no no no yes yes yes

Table 6.5.

Number of correctly tracked frames from the state-of-art trackers and the SMR

tracker. Table is taken and modified from [153].

Video Sequence

1. David 2. Jumping 3. Ped1 4. Ped2 5. Ped3 6. Car

Number of Frames 761 313 140 338 184 945

[154] 17 75 11 33 50 163

[155] n/a 313 6 8 5 n/a

[156] 94 44 22 118 53 10

[157] 135 313 101 37 49 45

[153] 761 170 140 97 52 510

SMR (this work) 761 313 140 236 66 510
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local maxima in the retinal space. Such distinction might be necessary as a deep system

will need 100-200 ms to process one visual scene [163], while tracking without predicting

object movement, as the one required for the oculo-motor control of smooth-pursuit [164],

requires faster processing of the visual stream.

Inspired by recent findings on shallow feature extractors of the visual cortex [165],

we postulate that simple tracking processes are based on a shallow neural network that

can quickly identify similarities between object features repeated in time. We propose an

algorithm that can track and extract motion of an object based on the similarity between

local features observed in subsequent frames. The local features are initially defined as a

bounding box that defines the object to track.

Our work uses a modified template matching algorithm but offers an advantage over

traditional template matching algorithms. Traditional template matching algorithms define

the tracking problem as follows: We are given two images, F (x, y) and G(x, y), which

represent the pixel values at each location (x, y). G(x, y) is the template, representing the

object that wanted to track, that may come from the user selection or an automatic detection

algorithm, and F (x, y) is the new image that comes from a camera. The goal is to find the

new location of the object (h1, h2) by minimizing some measures of the difference between

F (x+ h1, y + h2) and G(x, y) in different configurations.

In our work we change this definition of tracking and propose a novel approach, Sim-

ilarity Match Ratio (SMR). This approach is more robust to appearance change, disap-

pearance and outliers because instead of trying to minimize some measures of difference

between F (x+ h1, y + h2) and G(x, y) as a whole, we want to find (h1, h2) that gives the

best match ratio between F (x + h1, y + h2) and G(x, y). To do this, we are turning pixel

differences between F (x+ h1, y + h2) and G(x, y) into probability values and accumulat-

ing them for every pixel that has a good match. If there is no good match between some

pixels, these pixels provide zero probabilities because we are not interested in how badly

the two pixels match. The method is tested on challenging benchmark video sequences

which include camera movement, partial/full occlusion, illuminance change, scale change

and similar objects. State-of-the-art performance is achieved from these video sequences.
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6.2.2 Previous Work

Most popular trackers that are based on the traditional definition of the tracking prob-

lem (e.g. Sum-of-Squared-Distances (SSD), Sum-of-Absolute-Differences (SAD), Lucas-

Kanade tracker) try to find distance vector (h1, h2) that minimizes the difference between

F (x + h1, y + h2) and G(x, y) either on the grayscale or color image. However, the tem-

plate G(x, y) may be including outliers or some parts that dramatically change or disappear,

which cause tracking failure. The common approach to overcome these tracking failures is

that trackers should not treat all pixels in a uniform manner but eliminate outliers from the

computation.

Some studies [166,167] propose using a weighted histogram as a measure to minimize

for tracking an object. By assuming that pixels close to the center are the most reliable,

these methods weigh them higher, since occlusions and interferences tend to occur close to

boundaries. However, a dramatical change in the appearance can occur even in the center,

which cannot be handled by this method.

There are studies that aim to detect outliers and suppress them from the computation.

[168] uses the common approach that outliers produce large image differences that can

be detected by the estimation process [169]. Residuals are calculated iteratively and if

the variations of the residual are bigger than a user defined threshold they are considered

outliers and suppressed. [170] uses the spatial coherence property of the outliers which

means that outliers tend to form a spatially coherent group rather than being randomly

distributed across the template. In that work the template is divided into blocks and constant

weights are assigned for each block. If the image differences of the blocks between the

frames are large, it means these blocks include a significant amount of outliers. The method

excludes the blocks that contain outliers from the computation of minimization. These

methods are more robust to outliers. However, they are computationally expensive.

[153] proposes forward backward error which is based on the fact that correct track-

ing should be independent of the direction of time-flow. Firstly, points are tracked in the

forward direction. Then, backward tracking is applied to validate the trajectories. This
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method enables trackers to avoid tracking points that disappear from the camera view or

change appearance drastically. Before our work, Kalal’s tracker was the state-of-the-art.

Fig. 6.3. (Top) The red box is the SMR tracker’s output, the blue box is the

SAD tracker’s output. The ground-truth from the first frame is used as a tem-

plate which is shown on the left top corner of the frame. (Bottom) The abso-

lute differences for each pixel between the template and result from the SMR

tracker are mapped on the left and from the SAD tracker on the right. Dark

values (close to zero) report a better match. Note that even though there are

higher differences, the SMR tracker is able to find the correct patch.

6.2.3 Similarity Matching Ratio (SMR) Tracker

The SMR tracker uses a modified template-matching algorithm. In this algorithm, we

look for similarity between a template G(x, y) and patches of a new video frame F (x +

h1, y+h2). The SMR computes the difference between the template and the patches at each

pixel. Templates are moved convolutionally on the new video frame, and stepped by one
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(a) (b)

Fig. 6.4. Histogram of the pixel differences that were mapped in Figure 6.3.

(a) Map between the template and result from the SMR tracker and (b) result

from the SAD tracker. The SAD tracker minimizes the number pixels with

large differences, whereas the SMR tracker maximizes the number of pixels

that have small differences.

pixel. If this difference is lower than a threshold, it is summed to the output after negative

exponential distance conversion. This thresholding eliminates outlying pixels, in such a

way that they do not appear in the final output. The SMR algorithm is as follows:

1. The search area, (h1, h2), is limited to the neighborhood of the target’s previous

position.

2. For each pixel in the template G(x, y), the method is checking if the condition |F (x+

h1, y + h2)−G(x, y)| ≤ α is satisfied, where α is a dynamic threshold defined in 6.

3. If satisfied, we are interested in how close the match is, so the pixel difference is

converted into a probability value p by p = exp(−|F (x+ h1, y + h2)−G(x, y)|). If

not these pixels are ignored.

4. The probability values are summed up for each patch. The algorithm finds the

(h1, h2) that gives the highest similarity matching ratio, argmaxh1,h2

∑
p.



109

5. G(x, y)t+1 = F (x+h1, y+h2)t The patch is extracted in every detection and assigned

as new template.

6. Dynamic threshold α = max(G(x, y)t−G(x, y)t+1) ·k where k = 0.25 is a constant

determined experimentally.

The biggest advantage of the SMR is that pixel differences above α are not contributing

to the matching similarity output. These pixels may be outliers or points that dramatically

change appearance, and thus should not affect the matching similarity. Outlying pixels

usually only increase the error and cause failure, so we chose to ignore them in this method.

This way, only reliably matching pixels contribute to the output of each matching step.

6.2.4 Accuracy Results

This approach is tested on a challenging benchmark: the TLD dataset [152]. From

this dataset six videos with different properties were selected as displayed in Table 6.2.1.

Each video contains only one target. The metric used is the number of correctly tracked

frames. For this test, color videos are converted to grayscale. State-of-the-art performance

is achieved and results are presented in Table 6.5.

To illustrate how the qualitatively different way of defining the tracking problem of

the SMR tracker provides better results than the traditional approach, we will compare the

SMR tracker with the SAD tracker in the present section.

Figure 6.3 shows the detections from the SAD tracker and the SMR tracker where they

have used the same template. Points that dramatically changed appearance cause the SAD

tracker to fail whereas the SMR tracker correctly detects the object. For illustration pur-

poses, the differences for each pixel between the template and the patches the SAD tracker

and the SMR tracker detected are mapped in Figure 6.3. The patch the SMR tracker de-

tected has a bigger sum of absolute differences. However, that is because of the region that

dramatically changed appearance. That patch has many close matches with the template as

can be seen in Figure 6.4. As such, the SMR tracker is able to detect it. Again, with the
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same principle the SMR tracker is able to track the object when it is going out of the scene

as shown in Figure 6.5.

Fig. 6.5. The red boxes are the SMR tracker’s outputs. The video frame is ex-

tended and padded by zeroes. The SMR tracker is able to track when the target

is going out of the frame. The template update is ceased in these situations

which prevents the drifting from the object.

Fig. 6.6. (Top) The red boxes are the SMR tracker’s outputs. (Bottom) The blue

boxes are the SAD tracker’s outputs. Outlying pixels cause the SAD tracker to

drift, whereas the SMR tracker is not affected by them.
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The SMR tracker is more robust to outliers than the traditional approach. As can be

seen in Figure 6.6, outliers cause the SAD tracker to drift away from the object, whereas

the SMR tracker (Figure 6.6) finds the target. Ideally, the bounding box should be entirely

filled with the target. However, during long-term tracking, the object may move back and

forth and rotate which causes some background pixels to be included in the next template.

A tracker does not know which pixels belong to the object and which ones belong to the

background. On the other hand, the SMR tracker has a higher probability of rejecting

background pixels, as they tend to change more.

The SAD tracker from the 2nd frame to 3rd in Figure 6.6 (bottom) drifts away from the

object, because the pixels from the background have become included in the bounding box

and they propagate to the template. When the face moves right, the SAD tracker does not

move and drifts away from the object because the background, which has high contrast,

gives big differences if the bounding box shifts to a new position. Therefore, the traditional

approach gives priority to preventing big differences when it is making a decision, even if

these pixels are not the majority of the template. On the other hand, the SMR tracker is

focusing on the number of pixels that have small differences with the template, which is a

human face in this case (Figure 6.6 top).

Failure Mode

Even though the SMR tracker updates the template at every frame in this presented

work, drifts caused by the accumulation of small errors during each detection are not ob-

served by applying this method on the benchmark dataset. However, when an object be-

comes occluded very slowly, updating the template at every frame causes the template to

include foreground pixels that do not belong to the object. An example can be seen in

Figure 6.7. A better template update mechanism will prevent this kind of failure. This

will most probably require the use of a classifier, which is out of the scope of the work

in this chapter. Another limitation of this method is the inability of updating the template

size. This may become a problem when the object goes further away from the camera. In
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that case, the object will get smaller and may become a minority of the pixels within the

bounding box which would cause the failure of the tracker.

Fig. 6.7. Red boxes are the SMR tracker’s results. The every-frame template

update causes the outlying pixels to propagate to the templates. When outlying

pixels dominate the template, the SMR tracker fails.

6.2.5 SMR Accelerator

The SMR hardware accelerator is implemented on the Avnet Zedboard which has

the Zynq 7000 All Programmable SoC consisting of a Dual core Cortex-A9 and a Pro-

grammable Logic.

We follow the same architecture as presented in the last chapter. Such that we group all

patch operations into one single accelerator which provides us with following:

1. Exploits parallelism between patches and within patches.

2. Chains multiple operations in one clock cycle. These operations include sum of abso-

lute differences, comparison with threshold, exponential operations and summation

of the exponentials.
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6.3 Summary

We presented our system with two different applications of ConvNets: object classifi-

cation and object detection. Our experiments showed that it is possible to run successful

applications of ConvNets in real-time with significant power efficiency. The applications

using ConvNets are extensive, including tracking [171,172], action recognition [173], face

recognition [83], pixel-level scene labeling [174] and stereo matching [175]. These appli-

cations can be run on our system without any modification.

In this chapter, we also proposed a novel approach of tracking: the Similarity Matching

Ratio (SMR). The SMR tracker is more robust to outliers than the traditional approaches

because it is not collecting differences between the template and the frame for each pixel.

Instead, it is collecting probabilities from the pixels that have small differences from the

template. The SMR tracker tries to find a region which maximizes the good match instead

of minimizing the differences for the whole template. The SMR tracker is tested on chal-

lenging video sequences and achieves state-of-the-art performance. These results show that

SMR is a superior approach.

We implemented the SMR algorithm on the proposed system by slightly modifying

the custom hardware architecture and achieved significant speed-up. We showed that the

hardware system that is presented in the last chapter can be used for generic image pro-

cessing applications which use convolution-like data flow. SMR is one type that uses

convolution-like data flow, simpler examples include sum-of-absolute-differences (SAD)

or sum-of-square-differences (SSD) operations, widely used in tracking and motion esti-

mation algorithms.
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7. CONCLUSION

This thesis has extensively studied Convolutional Neural Networks (ConvNets). ConvNets

with millions of parameters trained on large-scale datasets close the gap with human per-

formance in many tasks. In this scenario, there were two big issues to be resolved: 1) to

obtain the state-of-the-art performance with minimal number of labeled data, 2) to be able

to use ConvNets in real-time applications on mobile phones, security cameras or in robotics

despite the fact that they have millions of parameters and connections.

In order to achieve high performance using a few amount of labeled data, there are two

approaches: 1) exploiting unlabeled data for learning feature hierarchies, 2) increasing the

size of a dataset by augmentation techniques. We have studied both of these approaches.

In order to discover patterns from unlabeled data, we used clustering learning algorithm.

We trained a deep ConvNet based on an enhanced version of a clustering algorithm. The

learned patterns from our proposed algorithm provided us with the filters in ConvNets. We

also learned the connections between the layers of a deep ConvNet which improves its

ability to be trained on a smaller amount of labeled data using an unsupervised learning

technique. Our framework obtained state-of-the-art performance results in different tasks.

We also extensively studied the augmentation techniques which result in higher performer

networks. In order to increase the dataset size, we proposed new augmentation techniques

that are based on segmenting the foreground objects from background. The proposed aug-

mentation methods provided increased accuracy of networks.

For the real-time applications of ConvNets, we studied different ways to reduce the

number of parameters and also explored specific kind of parallelizations on specific hard-

ware architectures. We presented an optimized streaming method for ConvNets’ hardware

accelerator on an embedded platform. We built different applications of ConvNets. Our

proposed system outperformed all other existing platforms while running these applica-

tions.
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We summarize our contributions below:

1. We showed that the accuracy obtained using unsupervised learning algorithms can

be greatly improved by reducing the correlation among parameters.

2. By limiting the connections between layers of deep networks, we were able to scale-

up the depth of networks via an unsupervised learning algorithm.

3. We showed that background in the training datasets can have drastic effects on the

testing accuracy. We improved the performance of a network by using segmented

objects in augmenting datasets.

4. We reviewed different methods of accelerating ConvNets on CPUs, GPUs, and cus-

tom hardware. We presented a custom hardware accelerator for ConvNets and showed

that it can provide significant energy efficiency compared to other existing platforms.

5. We built different applications of ConvNets and showcased that they can be used for

practical applications on embedded environments. We also proposed a new template

matching algorithm for visual tracking which obtained state-of-the-art performance

on several well-known datasets. We ran this tracking algorithm on our proposed

system and demonstrated its applicability and flexibility.

Overall, this work shows that ConvNets do not need enormous amount of labeled data

and similar performance results can be obtained with much fewer labeled data by utiliz-

ing unlabeled data and aggressive augmentation techniques. Furthermore, applications of

ConvNets are ready to be used in embedded platforms which exploit parallelizations at

many levels.
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