280 research outputs found

    Device-specific Outcomes Following Endovascular Aortic Aneurysm Repair

    Get PDF
    AbstractObjectiveTo compare aneurysm morphology, initial outcomes and mid-term results in patients receiving Talent or Zenith grafts for elective endovascular aneurysm repair (EVR).MethodsOver a 6-year time period ending in 2007, 286 patients underwent elective EVR of infra-renal abdominal aortic aneurysms using Talent or Zenith devices. Patient demographics, aneurysm morphology and initial outcomes (primary-assisted technical success rates, 30-day limb occlusion, re-intervention and mortality) were compared using chi-squared tests or Student's t-tests. Kaplan–Meier curves were calculated to compare cumulative rates of freedom from type I or III endoleak, re-intervention, endograft patency and overall survival over mid-term follow-up.ResultsAdverse aneurysm morphology was more common in patients receiving Zenith stent grafts, with a greater proportion of shorter neck lengths (<10mm, 12.9% vs 0%; p≤0.001) and severe neck angulation (>60°, 25.0% vs 10.3%; p=0.002). Equivalent primary-assisted technical success rates were achieved with both Talent and Zenith grafts (94.0% vs 96.1%; p=0.41). A significant number of adjunctive procedures were required in both groups to obtain a proximal endograft seal, with relatively more procedures performed in the Talent group (28.6% vs 12.4%; p=0.003). Early outcomes were similar for 30-day re-intervention (5.3% vs 3.9%; p=0.91), 30-day limb occlusion (1.5% vs 2.6%; p=0.51), 30-day morbidity (6.8% vs 11.8%; p=0.15) and 30-day mortality (4.5% vs 3.9%; p=0.80).The cumulative incidence of freedom from re-intervention was 88.3±2.9%, 86.1±3.3% and 84.1±3.9% at 1, 2 and 3 years respectively. There were no significant differences between Talent and Zenith groups for re-intervention, type I or III endoleak or limb occlusion rates over the same time period. Overall patient survival was 88.4±2.85% at 1 year, 83.7±4.0% at 2 years and 78.9±5.5% at 3 years.ConclusionsEquivalent primary-assisted technical success rates can be achieved using either Talent or Zenith endografts for endovascular aneurysm repair, but operating teams should be prepared to perform additional adjunctive procedures to obtain a primary proximal seal with either stent. The Zenith endograft performed well in the context of less favourable pre-operative aneurysm morphology. Both Talent and Zenith endografts appeared equally durable in the medium term

    Targeted Skipping of Human Dystrophin Exons in Transgenic Mouse Model Systemically for Antisense Drug Development

    Get PDF
    Antisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD) patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs). However, no animal model has been established to test AO targeting human dystrophin exon in vivo systemically. In this study, we applied Vivo-Morpholino to the hDMD/mdx mouse, a transgenic model carrying the full-length human dystrophin gene with mdx background, and achieved for the first time more than 70% efficiency of targeted human dystrophin exon skipping in vivo systemically. We also established a GFP-reporter myoblast culture to screen AOs targeting human dystrophin exon 50. Antisense efficiency for most AOs is consistent between the reporter cells, human myoblasts and in the hDMD/mdx mice in vivo. However, variation in efficiency was also clearly observed. A combination of in vitro cell culture and a Vivo-Morpholino based evaluation in vivo systemically in the hDMD/mdx mice therefore may represent a prudent approach for selecting AO drug and to meet the regulatory requirement

    Advances in gene therapy for muscular dystrophies

    Get PDF
    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments

    New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis</p> <p>Results</p> <p>Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg.</p> <p>Conclusion</p> <p>This study provides an alternative and reliable method to approach complex diseases. Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic markers of sporadic ALS pointing out the existence of a strong genetic background.</p

    Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability

    Get PDF
    BACKGROUND: The emergence of eukaryotes was characterized by the expansion and diversification of several ancient RNA-binding domains and the apparent de novo innovation of new RNA-binding domains. The identification of these RNA-binding domains may throw light on the emergence of eukaryote-specific systems of RNA metabolism. RESULTS: Using sensitive sequence profile searches, homology-based fold recognition and sequence-structure superpositions, we identified novel, divergent versions of the Sm domain in the Scd6p family of proteins. This family of Sm-related domains shares certain features of conventional Sm domains, which are required for binding RNA, in addition to possessing some unique conserved features. We also show that these proteins contain a second previously uncharacterized C-terminal domain, termed the FDF domain (after a conserved sequence motif in this domain). The FDF domain is also found in the fungal Dcp3p-like and the animal FLJ22128-like proteins, where it fused to a C-terminal domain of the YjeF-N domain family. In addition to the FDF domains, the FLJ22128-like proteins contain yet another divergent version of the Sm domain at their extreme N-terminus. We show that the YjeF-N domains represent a novel version of the Rossmann fold that has acquired a set of catalytic residues and structural features that distinguish them from the conventional dehydrogenases. CONCLUSIONS: Several lines of contextual information suggest that the Scd6p family and the Dcp3p-like proteins are conserved components of the eukaryotic RNA metabolism system. We propose that the novel domains reported here, namely the divergent versions of the Sm domain and the FDF domain may mediate specific RNA-protein and protein-protein interactions in cytoplasmic ribonucleoprotein complexes. More specifically, the protein complexes containing Sm-like domains of the Scd6p family are predicted to regulate the stability of mRNA encoding proteins involved in cell cycle progression and vesicular assembly. The Dcp3p and FLJ22128 proteins may localize to the cytoplasmic processing bodies and possibly catalyze a specific processing step in the decapping pathway. The explosive diversification of Sm domains appears to have played a role in the emergence of several uniquely eukaryotic ribonucleoprotein complexes, including those involved in decapping and mRNA stability

    Insula-specific responses induced by dental pain: a proton magnetic resonance spectroscopy study

    Full text link
    OBJECTIVES: To evaluate whether induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex after stimulation of the right maxillary canine and to examine whether these metabolic changes and the subjective pain intensity perception correlate. METHODS: Ten male volunteers were included in the pain group and compared with a control group of 10 other healthy volunteers. The pain group received a total of 87-92 electrically induced pain stimuli over 15 min to the right maxillary canine tooth. Contemporaneously, they evaluated the subjective pain intensity of every stimulus using an analogue scale. Neurotransmitter changes within the left insular cortex were evaluated by MR spectroscopy. RESULTS: Significant metabolic changes in glutamine (+55.1%), glutamine/glutamate (+16.4%) and myo-inositol (-9.7%) were documented during pain stimulation. Furthermore, there was a significant negative correlation between the subjective pain intensity perception and the metabolic levels of Glx, Gln, glutamate and N-acetyl aspartate. CONCLUSION: The insular cortex is a metabolically active region in the processing of acute dental pain. Induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex resulting in significant alterations in metabolites. Negative correlation between subjective pain intensity rating and specific metabolites could be observed

    Genome-wide association reveals three SNPs associated with sporadic amyotrophic lateral sclerosis through a two-locus analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amyotrophic lateral sclerosis (ALS) is a fatal, degenerative neuromuscular disease characterized by a progressive loss of voluntary motor activity. About 95% of ALS patients are in "sporadic form"-meaning their disease is not associated with a family history of the disease. To date, the genetic factors of the sporadic form of ALS are poorly understood.</p> <p>Methods</p> <p>We proposed a two-stage approach based on seventeen biological plausible models to search for two-locus combinations that have significant joint effects to the disease in a genome-wide association study (GWAS). We used a two-stage strategy to reduce the computational burden associated with performing an exhaustive two-locus search across the genome. In the first stage, all SNPs were screened using a single-marker test. In the second stage, all pairs made from the 1000 SNPs with the lowest p-values from the first stage were evaluated under each of the 17 two-locus models.</p> <p>Results</p> <p>we performed the two-stage approach on a GWAS data set of sporadic ALS from the SNP Database at the NINDS Human Genetics Resource Center DNA and Cell Line Repository <url>http://ccr.coriell.org/ninds/</url>. Our two-locus analysis showed that two two-locus combinations--rs4363506 (SNP1) and rs3733242 (SNP2), and rs4363506 and rs16984239 (SNP3) -- were significantly associated with sporadic ALS. After adjusting for multiple tests and multiple models, the combination of SNP1 and SNP2 had a p-value of 0.032 under the Dom∩Dom epistatic model; SNP1 and SNP3 had a p-value of 0.042 under the Dom × Dom multiplicative model.</p> <p>Conclusion</p> <p>The proposed two-stage analytical method can be used to search for joint effects of genes in GWAS. The two-stage strategy decreased the computational time and the multiple testing burdens associated with GWAS. We have also observed that the loci identified by our two-stage strategy can not be detected by single-locus tests.</p
    corecore