UNIVERSITY BIRMINGHAM University of Birmingham Research at Birmingham

The colonoscopy Direct Observation of Procedural Skills assessment tool for evaluating competency development during training

Siau, Keith; Crossley , James; Dunckley, Paul; Johnson, Gavin; Feeney , Mark ; Iacucci, Marietta; Anderson , John T

DOI: 10.14309/ajg.00000000000426

License: None: All rights reserved

Document Version Peer reviewed version

Citation for published version (Harvard):

Siau, K, Crossley, J, Dunckley, P, Johnson, G, Feeney, M, Iacucci, M & Anderson, JT 2019, 'The colonoscopy Direct Observation of Procedural Skills assessment tool for evaluating competency development during training', *The American Journal of Gastroenterology*. https://doi.org/10.14309/ajg.00000000000426

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.

• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
 Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

THE COLONOSCOPY DOPS ASSESSMENT TOOL FOR EVALUATING COMPETENCY DEVELOPMENT DURING TRAINING

Keith Siau^{1,2}, James Crossley³, Paul Dunckley^{1,4}, Gavin Johnson^{1,5}, Mark Feeney^{1,6}, Marietta Iacucci⁷, John T Anderson^{1,8}

On behalf of the Joint Advisory Group on Gastrointestinal Endoscopy (JAG)

Institutions:

¹ Joint Advisory Group on Gastrointestinal Endoscopy, Royal College of Physicians, London, UK

² Medical and Dental Sciences, University of Birmingham, Birmingham, UK

³ Academic Unit of Medical Education, University of Sheffield, Sheffield, UK

⁴ Department of Gastroenterology, Gloucestershire Hospitals NHSFT, Gloucester, UK

⁵ Department of Gastroenterology, University College London Hospitals NHSFT, London, UK

⁶ Department of Gastroenterology, Torbay and South Devon NHS Foundation Trust, Torquay, UK

⁷ NIHR Biomedical Research Centre, University of Birmingham and University Hospitals NHS Foundation Trust Birmingham, UK

⁸ Endoscopy, Gloucestershire Hospitals NHSFT, Cheltenham, UK

Corresponding author (and Guarantor): Dr Keith Siau; keithsiau@nhs.net

Short Title: Colonoscopy DOPS

Keywords:

Competence, Colonoscopy, DOPS, assessment, training

Contributions:

Study conception: KS, JC, PD, MF, JTA DOPS development: PD, GJ, MF, JTA Statistical analyses: KS, JC Initial draft of manuscript: KS, JTA Critical revisions: JC, PD, GJ, MF, MI, JTA

Potential Competing Interests: Keith Siau, Paul Dunckley, Gavin Johnson, Mark Feeney and John T Anderson are affiliated with the Joint Advisory Group on Gastrointestinal Endoscopy.

Word Count: 3308, Abstract: 259

1 ABSTRACT

2

Background: Formative colonoscopy direct observation of procedural skills (DOPS) assessments were
 updated in 2016 and incorporated into UK training but lack validity evidence. We aimed to appraise
 the validity of DOPS assessments, benchmark performance and evaluate competency development
 during training in diagnostic colonoscopy.

7

8 **Methods:** This prospective national study identified colonoscopy DOPS submitted over an 18-month 9 period to the UK training e-portfolio. Generalisability analyses were conducted to evaluate internal 10 structure validity and reliability. Benchmarking was performed using receiver operator characteristics 11 (ROC) analyses. Learning curves for DOPS items and domains were studied and multivariable analyses 12 performed to identify predictors of DOPS competency.

13

14 Results: Across 279 training units, 10749 DOPS submitted for 1199 trainees were analysed. The 15 acceptable reliability threshold (G>0.70) was achieved with 3 assessors performing 2 DOPS each. 16 DOPS competency rates correlated with the unassisted caecal intubation rate (rho 0.404, P<0.001). 17 Demonstrating competency in 90% of assessed items provided optimal sensitivity (90.2%) and 18 specificity (87.2%) for benchmarking overall DOPS competence. This threshold was attained in the 19 following order: 'pre-procedure' (50-99 procedures), 'endoscopic non-technical skills' and 'post-20 procedure' (150-199), 'management' (200-249) and 'procedure' (250-299) domain. At item-level, 21 competency in 'proactive problem solving' (rho 0.787) and 'loop management' (rho 0.780) correlated 22 strongest with the overall DOPS rating (P<0.001) and were the last to develop. Lifetime procedure 23 count, DOPS count, trainer specialty, easier case difficulty and higher caecal intubation rate were 24 significant multivariable predictors of DOPS competence.

25

Conclusion: This study establishes milestones for competency acquisition during colonoscopy training
 and provides novel validity and reliability evidence to support colonoscopy DOPS as a competency
 assessment tool.

1 WHAT IS NEW HERE

2
2

3 What is known

- Standardised, validated, competency-assessment tools in colonoscopy training are
 lacking.
- 6

7 What is new here

- The DOPS can be used to measure development of individual competencies.
- 9 Competency in DOPS mirrors the unassisted caecal intubation rate.
- DOPS is a valid and reliable tool which can be used to support colonoscopy training.

1 INTRODUCTION

2 Globally, renewed commitments towards the quality assurance of colonoscopy has led to a modern-3 day shift in the paradigm of colonoscopy training. The era of competency-based medical education 4 has drawn competency evaluation away from merit based on numbers and towards continuous and 5 objective evaluation of competence using standardised assessment tools.^{1,2} There is an increasing 6 expectation for training programmes to set competency benchmarks, facilitate objective and 7 standardised assessment of competence, and to monitor and ensure competency development during 8 training.³ The implementation of objective, valid and reliable competency-assessment tools are 9 necessary to support the delivery of this concept.⁴

10

11 The UK is one of the first countries to implement standardised assessment in colonoscopy. The Joint 12 Advisory Group on Gastrointestinal Endoscopy (JAG),⁵ the national quality assurance body for 13 endoscopic procedures, supported the development of direct observation of procedural skills (DOPS) 14 as an assessment tool. The first colonoscopy DOPS was developed in 2004 by a multidisciplinary panel of experts using a hierarchical task analysis format.⁶ Over the years, the colonoscopy DOPS 15 16 assessment form has undergone several iterations in response to feedback. In 2016, all DOPS 17 assessment forms were modified to include: 1) revisions to the items and descriptors, 2) change in the 18 scoring from a competency-based to supervision-based scale, and 3) the addition of a generic 19 endoscopic non-technical skills assessment domain, which have improved the validity of competency 20 assessments.⁷ The current formative DOPS for colonoscopy (Supplementary File 1) contains 24 items, 21 split into 5 domains, and an overall assessor rating.⁸ The DOPS is accompanied by item descriptors 22 (Supplementary File 2) which serve to facilitate objectivity of assessment.

23

Formative DOPS are completed by trainers after directly observing the performance of a trainee. DOPS are entered onto a national web-based system, implemented in 2009 for trainees to record endoscopy experience and assessment data - the JAG Electronic Training System (JETS) e-portfolio.⁹

1 Formative DOPS are defined by their purpose, i.e. assessments which highlight specific areas for 2 development and monitor progress longitudinally. For trainees in the later-stages of training, 3 formative assessments may also be used to gauge readiness for formal summative assessment, a 4 gateway step for independent practice. The JAG criteria for provisional colonoscopy certification and 5 suitability for independent colonoscopy practice comprise: lifetime colonoscopy count \geq 200, 6 unassisted caecal intubation rate ≥90% over the preceding 3 months, attendance of the JAG basic skills 7 course in colonoscopy, and competency in the preceding 5 formative DOPS, as determined by each 8 DOPS scoring \geq 90% competency in assessed items.^{10,11} Validity and reliability data for the previous 9 iteration of colonoscopy DOPS had been reported,⁶ but in the context of summative assessments for 10 Bowel Cancer Screening accreditation (asymptomatic guaiac-positive patients). The study did not 11 report on the benchmarking of outcomes and involved assessors who received five hours of dedicated 12 DOPS training, which would be unfeasible to implement nationally. Thus, a study involving the 13 updated DOPS in the formative (in-training) environment remains warranted. Given that each DOPS 14 assesses up to 24 individual competencies, analyses of DOPS from a national training cohort can 15 provide the granularity to study the development of specific technical, cognitive and generic non-16 technical skills during colonoscopy training. Such data may enable training programmes to benchmark 17 performance and determine competency milestones.

18

In this national study involving DOPS assessments of colonoscopy trainees, we aimed to: i) assess the validity and reliability of formative DOPS, ii) analyse DOPS data to benchmark competence and evaluate competence development during training, and iii) identify independent predictors of DOPS competence.

23 24

25 **Methods**

26 Study Design

This prospective, observational UK-wide study identified updated formative colonoscopy DOPS submitted onto the JETS e-portfolio over the 18-month period between July 2016-January 2018. Under JAG recommendations, the trainer's decision to perform a DOPS assessment is made prior to commencing a procedure and without the knowledge of the trainee, in order to minimise caseselection bias. Summative colonoscopy DOPS performed over this period were separately appraised.¹²

7

8 Factors Studied

9 For each DOPS completed, the following data were systematically collated: the individual item scores, 10 case difficulty and overall DOPS rating awarded by the assessor/trainer. Other covariates studied 11 included: the trainee and assessor identifier, trainee grade, lifetime colonoscopy count immediately 12 preceding the DOPS assessment, lifetime sigmoidoscopy count, gastroscopy certification status, 13 lifetime DOPS count and the unassisted caecal intubation rate calculated over the preceding 30 14 procedures.¹⁰ Lifetime procedure counts were derived from trainee-entered procedures logged onto 15 the JETS e-portfolio.

16

17 In the UK, the vast majority of all colonoscopy procedure are performed by three main specialties: 18 gastroenterologists, GI surgeons and non-medical (nurse) endoscopists.¹³ Gastroenterology specialty 19 training currently lasts five years and runs concurrently with training in acute general medicine and 20 on-call commitments. In surgery, lower gastroenterology training is a sub-speciality block within a 21 longer more general surgical training programme. In gastroenterology, all training is usually 22 associated with some commitment to general medical support throughout their training. Speciality 23 training grades range from years 3 to 7 (ST3-7) and training in GI surgery lasts six years (ST3-8). It is 24 possible to take time out at any stage of training for dedicated research, i.e. clinical research fellow 25 role. Certification in colonoscopy is not a requirement for completion of specialist training and may

- be continued upon completion as a consultant. Thus, for the purpose of analysis, ST3-5 grades were
 classified as junior, ST6+ as senior, and clinical research fellow treated as a separate category.
- 3
- 4

5 Outcomes

6 The primary outcome studied was the overall DOPS rating, which was awarded independent of the 7 DOPS items scores and rated on a 4-point ordinal scale (Supplementary File 3).⁸ These were converted 8 to a 4 point numerical scale to facilitate analyses: Score 1: requiring maximal supervision; Score 2: 9 significant supervision; Score 3: minimal supervision; Score 4: competent without supervision. 10 Endoscopic competence was defined as the ability to perform a procedure in an effective, safe and 11 timely manner. Items could be rated "not applicable" (N/A) if assessment was possible. N/A scores 12 were excluded from item and domain-level analyses. The percentage of items scoring competent 13 (Score 4) for each DOPS and domain (pre-procedural, technical, post-procedural and ENTS) were 14 adopted as the secondary outcome.

15

16

17 Statistical Analyses

18 Item-total correlations

19 Item-total analyses can be used to indicate internal structure validity by indicating differences in 20 magnitude of correlation between each DOPS item and the overall DOPS score. Analyses were 21 performed using Spearman's rank tests, with rho coefficients \geq 0.70 regarded as a strong positive 22 correlation.

23

24 Generalisability Theory

1 The reliability of DOPS assessments was evaluated using generalisability theory, a statistical 2 framework which applies variance component analysis to determine the influence of independent 3 variables on assessment outcomes, i.e. overall DOPS score.^{14,15} For this assessment design, the key 4 variance components are: trainee ability (across all assessors and cases: V_{trainee}), assessor stringency 5 (across all trainees and cases: Vassessor), assessor subjectivity attributable to the trainee (Vassessor*trainee), 6 and residual variance (Verror), most of which will be trainee case-to-case variation. This enables 7 generalisability coefficients (G) to be calculated as a function of the number of cases and assessors. 8 The G-coefficient is calculated using the same general equation as a reliability coefficient (G= trainee 9 variance / [trainee variance + error variance]), with values ≥ 0.70 considered of acceptable reliability 10 for in-training assessments.

11

12 Benchmarking Competency

Competency benchmarks were derived from receiver operating characteristics (ROC) curve analyses to determine the optimal percentage of competent items per DOPS in relation to overall DOPS competency. The value providing optimal sensitivity and specificity was calculated using Youden's index (sensitivity + specificity - 1).¹⁶

17

18 Competency Development

To estimate competency development (learning curves), the percentage of competent scores were calculated for each item, domain and global measure (overall assessor rating and percentage of competent items per DOPS), and stratified by lifetime procedure count. The lifetime procedure counts required to reach the competency benchmark score was used to estimate when trainees develop specific competencies as measured within DOPS.

24

1 Predictors of DOPS Competence

2	Multivariable analyses using a binary logistic regression approach were then performed to identify
3	independent factors associated with DOPS competence (overall DOPS outcome of 4). Generalised
4	estimating equations (GEE) with an autoregressive (AR1) structure were used to account for the non-
5	independence of trainee procedures. DOPS with missing data and those performed by NME trainees
6	were excluded from analyses, as unlike other specialties, NME trainees are usually trained to deliver
7	independent sigmoidoscopy practice, e.g. in Bowel Scope screening, before training in colonoscopy,
8	and such data may not be captured on the JETS e-portfolio.
9	
10	Statistical analyses were performed in SPSS (v24, Arkmont, NY: IBM Corp), with p<0.05 indicative of
11	significance throughout.
12	
13	
14	
15	RESULTS
16	
Γ/	<u>Participants</u>
18	During the study period a total of 10749 DOPS were included for analysis. DOPS were submitted by
19	1399 trainers (median 4 DOPS per trainer; IQR 2-9) for 1199 trainees (median 5 DOPS per trainee; IQR
20	2-13), within 279 UK endoscopy training units. Trainee characteristics are summarised in Table 1.
21	Those within the NME specialty had performed more flexible sigmoidoscopy procedures (P<0.001)
22	prior to DOPS assessments (median 92, IQR: 20-265) than gastroenterology (median 44, IQR 44-133)
23	and GI surgery trainees (median 51, IQR 17-104).
24	
25	
26	Item-Total Correlations

1 Item-total correlations were conducted to assess the relationship between the performance of each
2 DOPS item and the overall competency rating. This showed positive and significant correlations
3 (P<0.001) for all items (Table 2). Item-total correlations were weakest for items located within the
4 'pre-procedure' domain, and strongest for those within the 'procedure' domain, particularly for
5 'proactive problem solving' (rho 0.787), 'loop management' (rho 0.780), 'pace and progress' (rho
6 0.734) and 'tip control' (rho 0.719).

- 7
- 8

9 Sources of Variance

10 Variance component analysis yielded the following estimates of the effect of key variables on the 11 overall DOPS assessor rating: trainee ability (38%), assessor stringency (17%), assessor subjectivity 12 attributable to the trainee (12%) and residual variance (34%).

- 13
- 14

15 <u>Reliability</u>

Combining the variance estimates based on generalisability theory, the reliability of formative DOPS
 was modelled from different combinations of trainers and observations (**Table 3**). 6 observations (≥2
 DOPS each from 3 different assessors) was sufficient to achieve the reliability threshold of 0.70 for in-

19 training assessment.

20

21

22 Competency Thresholds

ROC analysis (**Figure 3**) showed that overall competency for an assessed procedure could be predicted by each component assessed item within DOPS, i.e. based on the percentage of items rated as competent within each DOPS (area under ROC: 0.956, P<0.001). Attainment of competency in 90% of assessed DOPS items yielded optimal sensitivity (90.2%) and specificity (87.2%) for predicting overall

competence, with corresponding false positive and false negative rates of 12.8% and 9.8%
 respectively. The DOPS competency rate of 90% was therefore set as the benchmark for delineating
 competence.

- 4
- 5

6 Competency Development during Colonoscopy Training

7 Across the cohort, DOPS performance, as measured by the mean percentage of competent scores for 8 each item (Table 4) and domain (Figure 1), was presented by strata of lifetime procedure count. 9 Considering all DOPS items, the 90% competency threshold was achieved after 200-249 procedures. 10 Trainees first developed competencies in the "pre-procedure" domain, in the item order of "consent", 11 "preparation" and "equipment check" (50-99 procedures), before other "pre-procedure" items (100-12 149 procedures). Competency development profiles for "post-procedure" and "ENTS" domains were 13 similar and developed after 150-199 procedures. This was followed by competence in the 14 "management" domain and in the "leadership" and "judgement and decision making" items within 15 the ENTS domain (200-249 procedures). Finally, proficiency in the "procedural" domain were attained 16 after 250-299 procedures. At item-level, competencies in "air management", "visualisation", "patient 17 comfort" and "scope handling" were achieved by 200-249 procedures. After 300 procedures, the 18 competency threshold was reached for "tip control" (90.8%) and "pace and progress" but not for 19 "proactive problem solving" (88.1%) and "loop management" (86.1%). Competency development 20 profiles did not vary by case difficulty (Supplementary File 4), although more complicated cases were 21 associated with lower rates of competent item scores within the "procedure" domain. Comparisons 22 between trainee specialties for each block of lifetime procedure count (Supplementary Files 5-7) 23 suggest that surgical trainees are more likely to be awarded DOPS competency than gastroenterology 24 counterparts.

Trainees achieved the median unassisted CIR target of 90% after 200-249 procedures (Figure 2);
 moderately positive correlation was observed between CIR and DOPS performance (rho 0.404,
 P<0.001).

- 4
- 5

6 **DOPS Competency**

On multivariable GEE analysis (**Table 5**), lifetime procedural count (P<0.001), case difficulty (P<0.001), lifetime colonoscopy count (P<0.001), lifetime colonoscopy DOPS count (P=0.002), and higher unassisted caecal intubation rate (P<0.001) were independently associated with DOPS competence. There was a direct relationship between assessor specialty and DOPS competence (P=0.002). After accounting for these factors, trainee specialty (P=0.665), trainee seniority (P=0.220), gastroscopy certification (P=0.161) and lifetime flexible sigmoidoscopy count (P=0.681) were not significantly associated with DOPS competence.

14

Over the study period, 184 trainees (gastroenterologist: 78; gastrointestinal surgeon: 68; non-medical endoscopist:35) applied for summative DOPS assessments for provisional colonoscopy certification after meeting eligibility criteria. The median lifetime colonoscopy count prior to summative assessment was 236 (IQR 211-285), with no significant differences between the three specialties (P=0.210). In total, 183 of the 184 trainees (99.5%) were deemed competent over the 4 summative DOPS assessments and were awarded certification for independent colonoscopy practice.

- 21
- 22
- 23

24 **Discussion**

In this prospective nationwide study of colonoscopy DOPS assessments undertaken within 279 UK training centres, we present validity and reliability data to support the use of colonoscopy DOPS as an in-training assessment tool. Based on Messick's contemporary framework for evaluating validity in

assessment tools,^{17,18} internal structure evidence (associations between test measures and reliability) 1 2 was supported through item-total correlations and generalisability theory analyses, while learning 3 curves and the observation that DOPS performance closely mirrors the unassisted CIR provides 4 discriminative validity (relations to other variables). ROC analyses showed that all items measured 5 within each DOPS could be accommodated to predict overall competence (AUROC=0.956); the 6 evaluation of a competency threshold and its false positive and false negative rates attests to 7 consequential validity (value implications of interpreting test scores). Content validity (relevance) may 8 be inferred from the multidisciplinary nature of DOPS construction and the improvement in the DOPS 9 rating scale,⁷ whereas response process validity (relationship between intended construct and 10 thought processes of assessors) stems from high trainer satisfaction reported with the previous 11 iteration of colonoscopy DOPS.⁶

12

13 Over the last decade, a number of competency assessment tools have been developed and validated 14 to support colonoscopy training.^{2,3,19} The Assessment of Competency in Endoscopy (ACE) tool,²⁰ which 15 succeeded the Mayo Colonoscopy Skills Assessment Tool (MCSAT), is currently used in North America.²¹ ACE measures 14 competency items and awards overall scores for technical and cognitive 16 17 skills on a performance-based scale ranging from 1 (novice) to 4 (highly-skilled). Following the analysis 18 of 1061 ACE assessments for 93 fellows, an overall score of 3.5 was reported as the optimal 19 competency threshold; this was attained for cognitive endpoints before technical skills, with 20 competency achieved in nearly all items after 250 procedures.²² The Gastrointestinal Endoscopy Competency Assessment Tool (GIECAT),²³ and more recently SAFE-T,²⁴ have also been introduced and 21 22 supported by validity and reliability data, but not have been incorporated into national endoscopy 23 training systems as with the DOPS.

24

25 The use of purpose-specific and validated formative assessment tools not only allows trainees and 26 trainers to facilitate targeted feedback, but also enables training programmes to set performance

1 benchmarks and profile competency development. The 24 items measured within each colonoscopy 2 DOPS provides the granularity to assess trainee progression in specific competency items. Data on 3 day-to-day, real-world evaluations of competency development using formative assessment tools are 4 lacking, especially those referencing the development of ENTS during colonoscopy training. In this 5 study, the 90% competency threshold was attained in order of: 'pre-procedure' (50-99 procedures), 6 'ENTS' and 'post-procedure' (150-199), 'management' (200-249) and 'procedure' (250-299) domain. 7 Such data appear to contrast that for gastroscopy where ENTS competencies developed after 8 technical competencies.²⁵ This finding could reflect the demands of colonoscopy as a more 9 technically-demanding procedure. As colonoscopy training may be preceded by training in 10 gastroscopy, it is possible that some of the generic competencies, e.g. ENTS, may be transferrable 11 between endoscopic modalities. At item-level, competencies in 'proactive problem solving' (rho 12 0.787) and 'loop management' (rho 0.780) correlated strongest with the overall DOPS rating (P<0.001) 13 and were the last to develop. This approach identifies specific skills which could be considered for 14 prioritisation. It is possible that, with future evolution, ENTS and other more recently added items will 15 be further refined, which may influence the observed rate at which the inter-related endoscopy skills 16 develop in parallel.

17

18 Competency development during colonoscopy training has been profiled using completion-based 19 endpoints such as CIR, although its definition and calculation method may vary internationally.²⁶ 20 Previous data from the UK JETS e-portfolio suggest that 233 lifetime procedures were required to achieve 90%+ unassisted CIR,²⁷ with other studies citing between 141-300 procedures to achieve this 21 22 target.^{28,29} Consistent with data from ACE assessments reported by Sedlack et al,²² our trainees 23 developed cognitive competence on procedure "indications" after 100 procedures. The ACE cohort 24 reached competency thresholds for motor and cognitive endpoints after 250 procedures. For DOPS, 25 the 200-249 lifetime procedure count marked the point where trainees began to achieve consistent 26 unassisted CIRs of 90%+. At present, JAG mandates a minimum lifetime procedure count of 200 in

order to trigger summative assessment.¹⁰ Despite this, previous JETS analyses found that trainees 1 2 applied for provisional colonoscopy certification after a median of 269 (IQR 226 - 342) lifetime 3 procedures.¹³ Furthermore, it is evident that trainees certified closer to the 200 threshold are more likely to exhibit a drop in performance during newly-independent practice.¹¹ As such, mandating a 4 5 minimum of 250 lifetime procedures may be suggested as a more appropriate criterion for triggering 6 summative assessment. For items of "proactive problem solving" and "loop resolution", the 90% 7 threshold was not accomplished even after 300 procedures, suggesting that these skills would 8 continue to develop during the independent (post-credentialing) period. This may also explain why in 9 more difficult cases, lower rates of competent item scores are seen within the "procedure" domain.

10

11 Our study had several limitations. First, the colonoscopy DOPS is primarily centred on assessing a 12 trainee's ability to perform high-quality diagnostic colonoscopy. Competencies relevant to 13 polypectomy are measured on a separate instrument: the direct observation of polypectomy skills (DOPvS).³⁰ Second, this was a real-world observational study of unselected cases involving all trainees 14 15 from all centres within the UK. Colonoscopy in the UK is typically performed either under conscious 16 sedation (with midazolam +/- intravenous opioid) or unsedated, which may be more challenging than 17 training in healthcare settings where propofol is routinely administered. Third, competency 18 development was assessed at the level of each DOPS assessment rather than each trainee. As the 19 frequency and intervals of DOPS assessments varied amongst trainees, it was not appropriate to 20 subject these to trainee-level analyses, except for the GEE regression models. Fourth, the DOPS does 21 not collect procedure-specific data, e.g. sedation use, indication, diagnoses, complication rates etc. 22 These are currently collected on the JETS e-portfolio but are not cross-linked with DOPS. Efforts are 23 underway to integrate DOPS outcomes with procedural-level data. Lifetime colonoscopy counts were 24 deduced from trainee-entered procedure entries on the JETS e-portfolio, which may risk selection bias 25 and underestimate time-to-competency data. This is now being being addressed in the UK National Endoscopy Database project where all procedures are centrally recorded.³¹ Finally, subgroup analyses 26

1 of DOPS competency rates were presented for gastroenterology and surgical specialties 2 (Supplementary File 5-7). This data should be interpreted with caution. Although there may have 3 been a trend for earlier competency development in surgical trainees, this difference did not remain 4 after multivariable GEE analysis (Table 5). This analysis also uncovered assessor variation, whereby 5 assessors from the GI surgical and non-medical (nurse) endoscopist specialties were more likely to 6 rate DOPS as being competent than those from the gastroenterology specialty. This raises the 7 possibility of assessor bias across trainer specialties. It is unclear whether this could reflect potential 8 differences in caseload, efficacy of training, or variation in assessor training in the use of DOPS. We 9 suspect that the stringency of gastroenterology assessors may arise from greater familiarity with 10 DOPS, in particular from attendance of Train-the-Trainers courses and Bowel Cancer Screening 11 accreditation where there is formal DOPS training. In these groups, there are proportionately far 12 greater numbers of gastroenterologists who train when compared to surgeons who train. Further 13 studies are needed to explore this further, in particular trainers' perceptions on the use of DOPS, and 14 to determine whether trainer interventions are necessary to improve the consistency of DOPS scoring.

15

16 Few competency assessment tools have undergone such rigorous evaluation to identify potential 17 heterogeneity on their usage. Multivariable regression models showed that, in addition to lifetime 18 procedure count and assessor specialty, other variables associated with DOPS competence included 19 DOPS count and easier case difficulty. Invariably, competency requires the demonstration of technical 20 and non-technical proficiencies across different cases contexts and procedural difficulties.³ 21 Mandating higher combinations of trainers and assessments can improve the reliability of DOPS, with 22 sufficient reliability (G>0.70) achievable with \geq 3 assessors observing \geq 2 DOPS each. Moreover, 23 engagement with the formative assessment process can promote feedback and reflective practice, 24 which may underpin the association between lifetime DOPS count and DOPS competency. With the 25 current spotlight fixed on high-quality colonoscopy in the remit of competency-based curricula, 26 training programmes are duty bound to ensure that competence is achievable, and that competency

elicited during the assessment process will effectively translate to competent clinical practice. The
delivery of this concept is supported by the observation that 99.5% of trainees who performed
competently within their last 5 formative DOPS, in conjunction with meeting minimum performance
indicators, also passed their summative assessments required for certification. Optimising the validity
and reliability of formative DOPS could potentially consolidate its role as an adjunctive training aid,
and in experienced trainees, as a pseudo-summative competency safeguard to quality assure training
in colonoscopy.

- 8
- 9 In summary, we provide validity and reliability evidence to support formative colonoscopy DOPS as
- 10 an in-training assessment tool, and present data on competency development, as measured using

11 DOPS.

REFERENCES

23	1.	Nasca TJ, Philibert I, Brigham T, et al. The Next GME Accreditation System — Rationale and Benefits. 2012:366(11):1051-56.
4	2	Ekkelenkamp VE Koch AD de Man RA et al. Training and competence assessment in GL endoscopy: a
5	2.	systematic review. Gut 2016;65(4):607-15.
6	3.	Siau K, Hawkes ND, Dunckley P. Training in Endoscopy. Curr Treat Options Gastroenterol
/		2018;16(3):345-61.
8	4.	Walsh CM. In-training gastrointestinal endoscopy competency assessment tools: Types of tools,
10	-	Sinu K. Groop IT. Howkes ND. et al. Impact of the Joint Advicent Group on Castrointestinal Endescent
10	э.	(IAG) on endoscopy services in the LIK and beyond 2019-10(2)-93-106
12	6	Barton IR Corbett S van der Vleuten CP. The validity and reliability of a Direct Observation of
12	0.	Barton sk, corbert 5, van der viedten er : me vandity and renability of a Direct observation of
13		Endose 2012/7E/21/E01_7
14	7	Elluose 2012, 75(5).591-7.
15	7.	Siau K, Dunckley P, Valori K, et al. Changes in scoring of Direct Observation of Procedural Skills (DOPS)
10	•	forms and the impact on competence assessment. Endoscopy 2018;50(8):770-78.
1/	8.	Joint Advisory Group on Gastrointestinal Endoscopy. Formative DUPS: Colonoscopy and Flexible
18		Sigmoidoscopy. 2016 [cited 20th April 2019]; Available from:
19		https://www.thejag.org.uk/Downloads/DOPS%20forms%20(international%20and%20reference%20us
20		e%20only)/Formative%20DOPS_Colonoscopy%20and%20Flexible%20sigmoidoscopy.pdf.
21	9.	Mehta T, Dowler K, McKaig BC, et al. Development and roll out of the JETS e-portfolio: a web based
22		electronic portfolio for endoscopists. Frontline Gastroenterology 2010;2(1):35.
23	10.	Joint Advisory Group on Gastrointestinal Endoscopy. JAG trainee certification process: Colonoscopy
24		(provisional and full). 2017 [cited 20th April 2019]; Available from:
25		https://www.thejag.org.uk/Downloads/JETS%20-
26		%20certification%20for%20trainees/Colonoscopy%20application%20criteria%20and%20process.pdf.
27	11.	Siau K, Hodson J, Valori RM, et al. Performance indicators in colonoscopy after certification for
28		independent practice: outcomes and predictors of competence. Gastrointest Endosc 2019;89(3):482-
29		92.e2.
30	12.	Joint Advisory Group on Gastrointestinal Endoscopy. Summative DOPS: Colonoscopy and Flexible
31		Sigmoidoscopy. 2016 [cited 20th April 2019]; Available from:
32		https://www.thejag.org.uk/Downloads/DOPS%20forms%20(international%20and%20reference%20us
33		e%20only)/Summative%20DOPS_Colonoscopy%20and%20Flexible%20sigmoidoscopy.pdf.
34	13.	Siau K. Anderson JT. Valori R. et al. Certification of UK gastrointestinal endoscopists and variations
35	-	between trainee specialties; results from the JETS e-portfolio. Endosc Int Open 2019;7(4):E551-E60.
36	14	Crossley I Davies H Humphris G et al. Generalisability: a key to unlock professional assessment. Med
37		Educ 2002:36(10):972-8
38	15	Webb NM Shavelson RI Haertel FH 4 Reliability Coefficients and Generalizability Theory. In: Rao CR
39	10.	Sinharay S. eds. Handbook of Statistics: Elsevier 2006:81-124
40	16	Buonn MD. Perkins NJ. Whitcomh BW. et al. Youden Index and ontimal cut-noint estimated from
40	10.	observations affected by a lower limit of detection. Biom 1 2008;50(3):419-30
$\frac{1}{12}$	17	Messick S. Validity of neuchological assessment: Validation of inferences from nersons' responses and
42 13	17.	norfermances as scientific inquiry into score meaning. American psychologist 1995;E0(9):741
43	10	performances as scientific inquiry into score meaning. American psychologist 1995,50(9).741.
44	18.	COOK DA, Hatala R. Valuation of educational assessments: a primer for simulation and beyond.
43	10	Advances in Simulation 2016;1(1):31.
40	19.	Leung FW. Assessment of trainees performance in colonoscopy. Gastrointest Endosc 2018;87(1):270-
4/		
48	20.	Fried GM, Marks JM, Mellinger JD, et al. ASGE's assessment of competency in endoscopy evaluation
49		tools for colonoscopy and EGD. Gastrointest Endosc 2014;80(2):366-7.
50	21.	Sedlack RE. The Mayo Colonoscopy Skills Assessment Tool: validation of a unique instrument to assess
51		colonoscopy skills in trainees. Gastrointest Endosc 2010:72(6):1125-33-33 e1-3
52	22.	Sedlack RE, Coyle WJ. Assessment of competency in endoscopy: establishing and validating
52 53	22.	Sedlack RE, Coyle WJ. Assessment of competency in endoscopy: establishing and validating generalizable competency benchmarks for colonoscopy. Gastrointest Endosc 2016;83(3):516-23.e1.
52 53 54	22. 23.	Sedlack RE, Coyle WJ. Assessment of competency in endoscopy: establishing and validating generalizable competency benchmarks for colonoscopy. Gastrointest Endosc 2016;83(3):516-23.e1. Walsh CM, Ling SC, Khanna N, et al. Gastrointestinal Endoscopy Competency Assessment Tool:

1 24. Kumar NL, Kugener G, Perencevich ML, et al. The SAFE-T assessment tool: derivation and validation of 2 3 4 5 6 a web-based application for point-of-care evaluation of gastroenterology fellow performance in colonoscopy. Gastrointest Endosc 2018;87(1):262-69. 25. Siau K, Crossley J, Dunckley P, et al. Direct observation of procedural skills (DOPS) assessment in diagnostic gastroscopy: nationwide evidence of validity and competency development during training. Surg Endosc 2019 Published Online First: 2019/03/27. doi: 10.1007/s00464-019-06737-7. 7 26. Siau K, Hodson J, Ravindran S, et al. Variability in cecal intubation rate by calculation method: a call 8 for standardization of key performance indicators in endoscopy. Gastrointest Endosc 9 2019;89(5):1026-36.e2. 10 27. Ward ST, Mohammed MA, Walt R, et al. An analysis of the learning curve to achieve competency at 11 colonoscopy using the JETS database. Gut 2014;63(11):1746. 12 28. Sedlack RE. Training to competency in colonoscopy: assessing and defining competency standards. 13 Gastrointestinal Endoscopy 2011;74(2):355-66.e2. 14 29. Cohen J, Cohen SA, Vora KC, et al. Multicenter, randomized, controlled trial of virtual-reality simulator 15 training in acquisition of competency in colonoscopy. Gastrointestinal Endoscopy 2006;64(3):361-68. 16 30. Joint Advisory Group on Gastrointestinal Endoscopy. Formative DOPyS: Colonoscopy and Flexible 17 Sigmoidoscopy. 2016 [cited 21/11/17; Available from: 18 https://www.thejag.org.uk/Downloads/DOPS%20Forms%20For%20International%20and%20reference 19 e%20use%20only/Formative%20DOPyS Colonoscopy%20and%20Flexible%20sigmoidoscopy.pdf. 20 31. Lee TJW, Siau K, Esmaily S, et al. Development of a national automated endoscopy database: The 21 United Kingdom National Endoscopy Database (NED). United European Gastroenterology Journal 22 2019;7(6):798-806. 23

1 FIGURE CAPTIONS

Figure 1: Learning curves in colonoscopy, as assessed by overall DOPS scores and average domain competency rates.

Figure 2: Correlation between median caecal intubation rate and percentage of competent items per DOPS,

3 grouped by lifetime colonoscopy count.

Figure 3: Receiver operating characteristics curve (ROC) analysis demonstrating the relationship between DOPS
 competence threshold (percentage of assessed items on DOPS scoring competent) and overall DOPS
 competency rating. The competence threshold of 90% provided optimal sensitivity (90.2%) and specificity
 (87.2%) for competency determination. AUROC: area under receiver operating characteristics curve.

1 TABLES

2 3

	Number of Trainees (%)	Number of DOPS (%)
·	Lifetime Procedure Count*	!
<50	316 (26.4%)	2299 (21.4%)
50-99	172 (14.3%)	1952 (18.2%)
100-149	122 (10.2%)	1996 (18.6%)
150-199	176 (14.7%)	1953 (18.2%)
200-249	152 (12.7%)	1115 (10.4%)
250-299	91 (7.6%)	659 (6.1%)
300+	170 (14.2%)	775 (7.2%)
· · · · · · · · · · · · · · · · · · ·	Specialty	
Gastroenterology	524 (43.7%)	4969 (46.2%)
GI Surgeon	426 (35.5%)	3076 (28.6%)
Non-medical endoscopist	203 (16.9%)	2412 (22.4%)
Unknown/Other	46 (3.8%)	271 (2.5%)
	Trainee Grade**	
ST3	61 (6.5%)	303 (3.8%)
ST4	135 (14.4%)	1268 (16.0%)
ST5	162 (17.2%)	1719 (21.7%)
ST6	144 (15.3%)	1209 (15.3%)
ST7	103 (11.0%)	760 (9.6%)
ST8	86 (9.1%)	591 (7.5%)
Clinical Research Fellow	52 (5.5%)	391 (4.9%)
Associate Specialist	110 (11.7%)	986 (12.4%)
Consultant	87 (9.3%)	698 (8.8%)

Table 1: Baseline characteristics of the colonoscopy training cohort. *Denotes the maximum lifetime procedure
 count preceding DOPS for each unique trainee. **For trainees with multiple training grades, the most recent

allocation was used. ST: specialist trainee (ST3 usually refers to the first year of endoscopy training); GI: Gastrointestinal

DOPS Item	N	Spearman coefficient (rho)	P-value
Indication	10424	0.403	<0.001
Risk	10393	0.401	<0.001
Confirms consent	10342	0.336	<0.001
Preparation	10581	0.363	<0.001
Equipment check	10697	0.357	<0.001
Monitoring	10668	0.366	<0.001
Sedation	10075	0.409	<0.001
Scope handling	10748	0.692	<0.001
Tip control	10747	0.719	<0.001
Air management	10691	0.649	<0.001
Proactive problem solving	10587	0.787	<0.001
Loop management	10525	0.780	<0.001
Patient comfort	10719	0.646	<0.001
Pace and progress	10727	0.734	<0.001
Visualisation	10722	0.692	<0.001
Recognition	9801	0.642	<0.001
Management	9065	0.656	<0.001
Complications	3653	0.662	<0.001
Report writing	9032	0.533	<0.001
Management plan	9502	0.540	<0.001
Communication and teamwork	10682	0.507	<0.001
Situation awareness	10634	0.543	<0.001
Leadership	10361	0.570	<0.001
Judgement and decision making	10460	0.617	<0.001

6

Table 2: Correlation between colonoscopy DOPS items and overall competence rating (Item-global correlations)presented as Spearman's rho coefficients. Strongly positive correlations (rho >0.70) indicated in bold.

		Observations per Trainer							
		1	2	3	4	5	10	15	20
	1	0.38	0.45	0.48	0.50	0.51	0.54	0.55	0.55
	2	0.55	0.62	0.65	0.67	0.68	0.70	0.71	0.71
ners	3	0.64	0.71	0.74	0.75	0.76	0.78	0.78	0.79
Traii	4	0.71	0.77	0.79	0.80	0.81	0.82	0.83	0.83
	5	0.75	0.80	0.82	0.83	0.84	0.85	0.86	0.86
	6	0.78	0.93	0.85	0.86	0.88	0.88	0.88	0.88

7

8 Table 3: Reliability estimates (G-coefficients) of formative colonoscopy DOPS based on 1-6 trainers each

9 observing 1-20 assessments. *G-coefficients of 0.70+ based on assessor and assessment combinations (indicating*

 $10 \qquad \textit{sufficient reliability for in-training assessment) are shown in bold.}$

	Lifetime Procedure Count						
	<50	50-99	100-149	150-199	200-249	250-299	300+
Indication	75.4%	87.5%	93.6%	98.0%	97.5%	98.9%	98.8%
	(73.6%-77.2%)	(86.0%-88.9%)	(92.4%-94.6%)	(97.3%-98.5%)	(96.5%-98.3%)	(97.9%-99.5%)	(97.8%-99.4%)
Risk	75.8%	87.0%	93.7%	97.9%	97.9%	99.1%	98.3%
	(74.0%-77.6%)	(89.9%-93.7%)	(92.5%-94.7%)	(97.1%-98.4%)	(96.9%-98.6%)	(98.1%-99.6%)	(97.2%-99.0%)
Confirms consent	82.4%	91.6%	95.6%	98.5%	98.5%	99.4%	99.2%
	(80.8%-84.0%)	(90.3%-92.8%)	(94.6%-96.4%)	(97.9%-99.0%)	(97.7%-99.1%)	(98.5%-99.8%)	(98.4%-99.7%)
Preparation	79.4%	90.5%	94.4%	98.2%	98.3%	99.1%	99.2%
	(77.7%-81.1%)	(89.2%-91.8%)	(93.4%-95.4%)	(97.5%-98.7%)	(97.4%-98.9%)	(98.1%-99.6%)	(98.4%-99.7%)
Equipment check	79.3%	90.2%	94.3%	97.7%	97.9%	98.2%	98.8%
	(77.6%-80.9%)	(88.8%-91.5%)	(93.2%-95.3%)	(97.0%-98.3%)	(97.0%-98.6%)	(96.9%-99.0%)	(97.9%-99.4%)
Monitoring	78.6%	89.3%	93.9%	98.1%	98.4%	98.8%	99.1%
	(76.9%-80.3%)	(87.9%-90.6%)	(92.7%-94.9%)	(97.4%-98.6%)	(97.5%-99.0%)	(97.7%-99.4%)	(98.2%-99.6%)
Sedation	70.5%	85.7%	90.9%	96.9%	97.3%	98.3%	97.6%
	(68.5%-72.4%)	(84.1%-87.3%)	(89.5%-92.1%)	(96.0%-97.6%)	(96.2%-98.1%)	(97.0%-99.1%)	(96.3%-98.5%)
Scope handling	35.5%	58.8%	74.0%	85.6%	90.8%	93.3%	96.0%
	(33.5%-37.4%)	(56.6%-61.0%)	(72.1%-75.9%)	(84.0%-87.1%)	(89.0%-92.4%)	(91.2%-95.0%)	(94.4%-97.2%)
Tip control	29.4%	50.6%	68.2%	80.5%	84.6%	87.9%	90.8%
	(27.6%-31.3%)	(48.4%-52.9%)	(66.2%-70.3%)	(78.7%-82.2%)	(82.4%-86.6%)	(85.2%-90.2%)	(88.7%-92.7%)
Air management	37.9%	63.8%	77.5%	87.8%	92.5%	93.2%	95.0%
	(35.9%-39.9%)	(61.7%-65.9%)	(75.6%-79.3%)	(86.3%-89.2%)	(90.8%-93.9%)	(91.0%-94.9%)	(93.2%-96.3%)
Proactive	22.2%	39.5%	57.9%	72.4%	82.0%	86.7%	88.1%
problem solving	(20.5%-23.9%)	(37.3%-41.7%)	(55.7%-60.1%)	(70.3%-74.3%)	(79.6%-84.2%)	(83.9%-89.1%)	(85.6%-90.2%)
Loop	18.3%	34.4%	51.5%	69.9%	75.5%	78.2%	86.1%
management	(16.7%-20.0%)	(32.3%-36.6%)	(49.2%-53.7%)	(67.8%-71.9%)	(72.9%-78.0%)	(74.9%-81.3%)	(83.5%-88.4%)
Patient comfort	40.0%	62.0%	77.0%	85.5%	90.2%	92.8%	93.7%
	(38.0%-42.0%)	(59.9%-64.2%)	(75.1%-78.8%)	(83.9%-87.0%)	(88.4%-91.9%)	(90.7%-94.6%)	(91.8%-95.2%)
Pace and progress	27.9%	49.9%	66.4%	79.8%	84.4%	89.7%	91.2%
	(26.1%-29.8%)	(47.7%-52.1%)	(64.3%-68.4%)	(78.0%-81.5%)	(82.2%-86.4%)	(87.2%-91.8%)	(89.1%-93.1%)

Visualisation	32.5%	58.0%	73.9%	85.6% (84.0%-	90.9%	93.6%	96.1%
	(30.6%-34.5%)	(55.8%-60.1%)	(71.9%-75.8%)	87.2%)	(89.1%-92.5%)	(91.6%-95.3%)	(94.6%-97.3%)
Recognition	42.0%	62.0%	78.8%	89.1% (87.6%-	93.2%	95.5%	96.2%
	(39.9%-44.2%)	(59.7%-64.2%)	(76.9%-80.6%)	90.5%)	(91.6%-94.6%)	(93.7%-97.0%)	(94.6%-97.4%)
Management	40.7%	59.4%	76.1%	87.4% (85.8%-	91.4%	94.7%	93.7%
	(38.4%-43.0%)	(57.0%-61.8%)	(74.0%-78.0%)	88.9%)	(89.5%-93.0%)	(92.6%-96.3%)	(91.7%-95.4%)
Complications	50.6%	65.3%	79.8%	90.5% (88.3%-	96.3%	97.6%	95.9%
	(46.5%-54.7%)	(61.2%-69.2%)	(76.6%-82.8%)	92.4%)	(94.3%-97.7%)	(95.4%-98.9%)	(93.3%-97.7%)
Report writing	53.6%	74.0%	86.1%	92.5% (91.2%-	95.4%	96.7%	96.0%
	(51.2%-56.0%)	(71.8%-76.2%)	(84.4%-87.7%)	93.7%)	(94.0%-96.6%)	(95.1%-97.9%)	(94.4%-97.2%)
Management	52.4%	71.4%	83.2%	92.0% (90.7%-	95.0%	94.7%	95.6%
plan	(50.1%-54.7%)	(69.2%-73.5%)	(81.4%-84.9%)	93.2%)	(93.6%-96.2%)	(92.7%-96.2%)	(93.9%-96.9%)
Communication	61.6%	77.5%	85.9%	92.6% (91.3%-	95.1%	95.9%	96.6%
and teamwork	(59.6%-63.6%)	(75.6%-79.3%)	(84.3%-87.4%)	93.7%)	(93.7%-96.2%)	(94.2%-97.2%)	(95.2%-97.7%)
Situation	57.0%	74.5%	83.4%	91.6% (90.3%-	94.8%	95.8%	94.9%
awareness	(54.9%-59.0%)	(72.5%-76.4%)	(81.7%-85.0%)	92.8%)	(93.4%-96.0%)	(94.0%-97.1%)	(93.2%-96.3%)
Leadership	52.2%	68.2%	80.6%	89.1% (87.6%-	92.6%	92.1%	94.7%
	(50.0%-54.3%)	(66.1%-70.3%)	(78.8%-82.3%)	90.4%)	(91.0%-94.1%)	(89.9%-94.0%)	(93.0%-96.1%)
Judgement and decision making	47.7%	64.3%	78.2%	88.8% (87.3%-	91.4%	93.4%	94.8%
	(45.6%-49.8%)	(62.1%-66.4%)	(76.3%-80.0%)	90.1%)	(89.7%-93.0%)	(91.3%-95.1%)	(93.1%-96.2%)
All items	50.7%	68.7%	80.1%	89.1%	92.2%	94.0%	95.1%
	(49.4%-52.1%)	(67.3%-70.0%)	(79.0%-81.3%)	(88.2%-89.9%)	(91.2%-93.2%)	(92.9%-95.0%)	(94.2%-96.1%)

Table 4: Competency rates as measured by colonoscopy DOPS. The percentage of DOPS scoring competent for each assessed item (with 95% confidence intervals) is

 presented for each stratum of lifetime colonoscopy count. Highlighted values denote those which have reached the competency threshold of 90%.

Factor	N (%)	Multivariable	95% Confidence	p-value
		Odds Ratio	Interval	
Trainee Specialty				
Gastroenterology	4469 (65.1%)		REF	
GI Surgeon	2399 (34.9%)	1.09	0.73-1.65	0.665
Trainee Seniority				0.220
Junior	2933 (42.7%)		REF	_
Senior	3589 (52.3%)	1.26	0.97-1.64	0.091
Clinical Research Fellow	346 (5.0%)	1.25	0.77-2.03	0.372
Lifetime Colonoscopy Count				<0.001
<50	1256 (18.3%)		REF	
50-99	1267 (18.4%)	2.97	2.18-4.03	<0.001
100-149	1291 (18.8%)	5.74	3.99-8.26	<0.001
150-199	1358 (19.8%)	11.5	7.67-17.1	<0.001
200-249	720 (10.5%)	16.7	10.3-27.0	<0.001
250-299	440 (6.4%)	25.9	14.1-47.2	<0.001
300+	536 (7.8%)	45.9	18.9-111.6	<0.001
Assessor Role				0.002
Gastroenterologist	3911 (56.9%)		REF	_
GI Surgeon	1597 (23.3%)	1.51	1.08-2.10	0.001
Non-medical endoscopist	1324 (19.3%)	1.66	1.24-2.23	0.015
Case Difficulty				<0.001
Easy	1582 (23.0%)		REF	
Moderate	4344 (63.2%)	0.63	0.54-0.74	<0.001
Complicated	942 (13.7%)	0.42	0.34-0.52	<0.001
Unassisted Caecal Intubation I	Rate (over 30 prev	vious procedures)		<0.001
<70%	2467 (35.9%)		REF	
70-89%	2503 (36.4%)	1.32	1.11-1.56	0.002
90%+	1898 (27.6%)	1.82	1.48-2.23	<0.001
Lifetime Colonoscopy DOPS co	ount			0.002
<5	2168 (31.6%)		REF	
5-9	1953 (28.4%)	1.51	1.21-1.88	<0.001
10-14	1222 (17.8%)	1.55	1.14-2.10	0.005
15-19	1525 (22.2%)	1.85	1.26-2.72	0.002
Gastroscopy Certification				
No	3104 (45.2%)		REF	
Yes	3764 (54.8%)	0.805	0.60-1.09	0.161
Lifetime Flexible Sigmoidosco	oy Count			0.681
<30	2276 (33.1%)		REF	
30-39	2685 (39.1%)	1.05	0.82-1.35	0.680
80+	1907 (27.8%)	0.97	0.74-1.27	0.812

Table 5: Multivariable analysis of in-training factors associated with competence in colonoscopy DOPS (overall DOPS rating achieving the competent outcome), based on 6868 DOPS performed by gastroenterology and GI surgical trainees. 1st to 3rd year specialty trainees (ST3-ST5) were classified as junior seniority and ST6+ as senior.

Generalised estimating equations were used to account for the non-independence of repeat DOPS by the same trainee. Bold p-values are significant at p<0.05.