20,247 research outputs found
A Study of Single Pulses in the Parkes Multibeam Pulsar Survey
We reprocessed the Parkes Multibeam Pulsar Survey, searching for single
pulses out to a DM of 5000 pc cm with widths of up to one second. We
recorded single pulses from 264 known pulsars and 14 Rotating Radio Transients.
We produced amplitude distributions for each pulsar which we fit with
log-normal distributions, power-law tails, and a power-law function divided by
an exponential function, finding that some pulsars show a deviation from a
log-normal distribution in the form of an excess of high-energy pulses. We
found that a function consisting of a power-law divided by an exponential fit
the distributions of most pulsars better than either log-normal or power-law
functions. For pulsars that were detected in a periodicity search, we computed
the ratio of their single-pulse signal-to-noise ratios to their signal-to-noise
ratios from a Fourier transform and looked for correlations between this ratio
and physical parameters of the pulsars. The only correlation found is the
expected relationship between this ratio and the spin period. Fitting
log-normal distributions to the amplitudes of pulses from RRATs showed similar
behaviour for most RRATs. Here, however, there seem to be two distinct
distributions of pulses, with the lower-energy distribution being consistent
with noise. Pulse-energy distributions for two of the RRATS processed were
consistent with those found for normal pulsars, suggesting that pulsars and
RRATs have a common emission mechanism, but other factors influence the
specific emission properties of each source class.Comment: 11 pages, 6 figures, 3 tables, accepted for publication in MNRA
Quantum picturalism for topological cluster-state computing
Topological quantum computing is a way of allowing precise quantum
computations to run on noisy and imperfect hardware. One implementation uses
surface codes created by forming defects in a highly-entangled cluster state.
Such a method of computing is a leading candidate for large-scale quantum
computing. However, there has been a lack of sufficiently powerful high-level
languages to describe computing in this form without resorting to single-qubit
operations, which quickly become prohibitively complex as the system size
increases. In this paper we apply the category-theoretic work of Abramsky and
Coecke to the topological cluster-state model of quantum computing to give a
high-level graphical language that enables direct translation between quantum
processes and physical patterns of measurement in a computer - a "compiler
language". We give the equivalence between the graphical and topological
information flows, and show the applicable rewrite algebra for this computing
model. We show that this gives us a native graphical language for the design
and analysis of topological quantum algorithms, and finish by discussing the
possibilities for automating this process on a large scale.Comment: 18 pages, 21 figures. Published in New J. Phys. special issue on
topological quantum computin
A Highly Ordered Faraday-Rotation Structure in the Interstellar Medium
We describe a Faraday-rotation structure in the Interstellar Medium detected
through polarimetric imaging at 1420 MHz from the Canadian Galactic Plane
Survey (CGPS). The structure, at l=91.8, b=-2.5, has an extent of ~2 degree,
within which polarization angle varies smoothly over a range of ~100 degree.
Polarized intensity also varies smoothly, showing a central peak within an
outer shell. This region is in sharp contrast to its surroundings, where
low-level chaotic polarization structure occurs on arcminute scales. The
Faraday-rotation structure has no counterpart in radio total intensity, and is
unrelated to known objects along the line of sight, which include a Lynds
Bright Nebula, LBN 416, and the star cluster M39 (NGC7092). It is interpreted
as a smooth enhancement of electron density. The absence of a counterpart,
either in optical emission or in total intensity, establishes a lower limit to
its distance. An upper limit is determined by the strong beam depolarization in
this direction. At a probable distance of 350 +/- 50 pc, the size of the object
is 10 pc, the enhancement of electron density is 1.7 cm-3, and the mass of
ionized gas is 23 M_sun. It has a very smooth internal magnetic field of
strength 3 microG, slightly enhanced above the ambient field. G91.8-2.5 is the
second such object to be discovered in the CGPS, and it seems likely that such
structures are common in the Magneto-Ionic Medium.Comment: 16 pages, 5 figures, ApJ accepte
Equational reasoning with context-free families of string diagrams
String diagrams provide an intuitive language for expressing networks of
interacting processes graphically. A discrete representation of string
diagrams, called string graphs, allows for mechanised equational reasoning by
double-pushout rewriting. However, one often wishes to express not just single
equations, but entire families of equations between diagrams of arbitrary size.
To do this we define a class of context-free grammars, called B-ESG grammars,
that are suitable for defining entire families of string graphs, and crucially,
of string graph rewrite rules. We show that the language-membership and
match-enumeration problems are decidable for these grammars, and hence that
there is an algorithm for rewriting string graphs according to B-ESG rewrite
patterns. We also show that it is possible to reason at the level of grammars
by providing a simple method for transforming a grammar by string graph
rewriting, and showing admissibility of the induced B-ESG rewrite pattern.Comment: International Conference on Graph Transformation, ICGT 2015. The
final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-21145-9_
Phylogenomic and comparative genomic studies robustly demarcate two distinct clades of Pseudomonas aeruginosa strains: proposal to transfer the strains from an outlier clade to a novel species Pseudomonas paraeruginosa sp. nov
The strains of Pseudomonas aeruginosa exhibit considerable differences in their genotypic and pathogenic properties. To clarify their evolutionary/taxonomic relationships, comprehensive phylogenomic and comparative genomic studies were conducted on the genome sequences of 212 P. aeruginosa strains covering their genetic diversity. In a phylogenomic tree based on 118 conserved proteins, the analysed strains formed two distinct clades. One of these clades, Clade- 1, encompassing >70 % of the strains including the type strain DSM 50071T, represents the species P. aeruginosa sensu stricto. Clade- 2, referred to in earlier work as the outlier group, with NCTC 13628T as its type strain, constitutes a novel species level lineage. The average nucleotide identity, average amino acid identity and digital DNAâDNA hybridization values between the strains from Clade- 1 and Clade- 2 are in the range of 93.4â93.7, 95.1â95.3 and 52â53 %, respectively. The 16S rRNA gene of P. aeruginosa DSM 50071T also shows 98.3 % similarity to that of NCTC13628T. These values are lower than the suggested cut- off values for species distinction, indicating that the Clade- 2 strains (NCTC 13628T) constitute a new species. We also report the identification of 12 conserved signature indels in different proteins and 24 conserved signature proteins that are exclusively found in either Clade- 1 or Clade- 2, providing a reliable means for distinguishing these clades. Additionally, in contrast to swimming motility, twitching motility is only present in Clade- 1 strains. Based on earlier work, the strains from these two clades also differ in their pathogenic mechanisms (presence/absence of Type III secretion system), production of biosurfactants, phenazines and siderophores, and several other genomic characteristics. Based on the evidence from different studies, we propose that the Clade- 2 strains constitute a novel species for which the name Pseudomonas paraeruginosa is proposed. The type strain is NCTC 13628T (=PA7T=ATCC 9027T). The description of Pseudomonas aeruginosa is also emended to include information for different molecular markers specific for this species
The GHZ/W-calculus contains rational arithmetic
Graphical calculi for representing interacting quantum systems serve a number
of purposes: compositionally, intuitive graphical reasoning, and a logical
underpinning for automation. The power of these calculi stems from the fact
that they embody generalized symmetries of the structure of quantum operations,
which, for example, stretch well beyond the Choi-Jamiolkowski isomorphism. One
such calculus takes the GHZ and W states as its basic generators. Here we show
that this language allows one to encode standard rational calculus, with the
GHZ state as multiplication, the W state as addition, the Pauli X gate as
multiplicative inversion, and the Pauli Z gate as additive inversion.Comment: In Proceedings HPC 2010, arXiv:1103.226
Quenched Approximation Artifacts: A study in 2-dimensional QED
The spectral properties of the Wilson-Dirac operator in 2-dimensional QED
responsible for the appearance of exceptional configurations in quenched
simulations are studied in detail. The mass singularity structure of the
quenched functional integral is shown to be extremely compicated, with multiple
branch points and cuts. The connection of lattice topological charge and
exactly real eigenmodes is explored using cooling techniques. The lattice
volume and spacing dependence of these modes is studied, as is the effect of
clover improvement of the action. A recently proposed modified quenched
approximation is applied to the study of meson correlators, and the results
compared with both naive quenched and full dynamical calculations of the same
quantity.Comment: 34 pages (Latex) plus 9 embedded figures; title change
Identification of a nearby stellar association in the Hipparcos catalog: implications for recent, local star formation
The TW Hydrae Association (~55 pc from Earth) is the nearest known region of
recent star formation. Based primarily on the Hipparcos catalog, we have now
identified a group of 9 or 10 co-moving star systems at a common distance (~45
pc) from Earth that appear to comprise another, somewhat older, association
(``the Tucanae Association''). Together with ages and motions recently
determined for some nearby field stars, the existence of the Tucanae and TW
Hydrae Associations suggests that the Sun is now close to a region that was the
site of substantial star formation only 10-40 million years ago. The TW Hydrae
Association represents a final chapter in the local star formation history.Comment: 5 pages incl figs and table
Triton's surface age and impactor population revisited in light of Kuiper Belt fluxes: Evidence for small Kuiper Belt objects and recent geological activity
Neptune's largest satellite, Triton, is one of the most fascinating and
enigmatic bodies in the solar system. Among its numerous interesting traits,
Triton appears to have far fewer craters than would be expected if its surface
was primordial. Here we combine the best available crater count data for Triton
with improved estimates of impact rates by including the Kuiper Belt as a
source of impactors. We find that the population of impactors creating the
smallest observed craters on Triton must be sub-km in scale, and that this
small-impactor population can be best fit by a differential power-law size
index near -3. Such results provide interesting, indirect probes of the unseen
small body population of the Kuiper Belt. Based on the modern, Kuiper Belt and
Oort Cloud impactor flux estimates, we also recalculate estimated ages for
several regions of Triton's surface imaged by Voyager 2, and find that Triton
was probably active on a time scale no greater than 0.1-0.3 Gyr ago (indicating
Triton was still active after some 90% to 98% of the age of the solar system),
and perhaps even more recently. The time-averaged volumetric resurfacing rate
on Triton implied by these results, 0.01 km yr or more, is likely
second only to Io and Europa in the outer solar system, and is within an order
of magnitude of estimates for Venus and for the Earth's intraplate zones. This
finding indicates that Triton likely remains a highly geologically active world
at present, some 4.5 Gyr after its formation. We briefly speculate on how such
a situation might obtain.Comment: 14 pages (TeX), plus 2 postscript figures Stern & McKinnon, 2000, AJ,
in pres
- âŠ