384 research outputs found
Vagus nerve stimulation for epilepsy: A narrative review of factors predictive of response
\ua9 2024 The Author(s). Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy. However, there is a lack of reliable predictors of VNS response in clinical use. The identification of factors predictive of VNS response is important for patient selection and stratification as well as tailored stimulation programming. We conducted a narrative review of the existing literature on prognostic markers for VNS response using clinical, demographic, biochemical, and modality-specific information such as from electroencephalography (EEG), magnetoencephalography, and magnetic resonance imaging (MRI). No individual marker demonstrated sufficient predictive power for individual patients, although several have been suggested, with some promising initial findings. Combining markers from underresearched modalities such as T1-weighted MRI morphometrics and EEG may provide better strategies for treatment optimization
The impact of epilepsy surgery on the structural connectome and its relation to outcome
BACKGROUND:
Temporal lobe surgical resection brings seizure remission in up to 80% of patients, with long-term complete seizure freedom in 41%. However, it is unclear how surgery impacts on the structural white matter network, and how the network changes relate to seizure outcome.
METHODS:
We used white matter fibre tractography on preoperative diffusion MRI to generate a structural white matter network, and postoperative T1-weighted MRI to retrospectively infer the impact of surgical resection on this network. We then applied graph theory and machine learning to investigate the properties of change between the preoperative and predicted postoperative networks.
RESULTS:
Temporal lobe surgery had a modest impact on global network efficiency, despite the disruption caused. This was due to alternative shortest paths in the network leading to widespread increases in betweenness centrality post-surgery. Measurements of network change could retrospectively predict seizure outcomes with 79% accuracy and 65% specificity, which is twice as high as the empirical distribution. Fifteen connections which changed due to surgery were identified as useful for prediction of outcome, eight of which connected to the ipsilateral temporal pole.
CONCLUSIONS:
Our results suggest that the use of network change metrics may have clinical value for predicting seizure outcome. This approach could be used to prospectively predict outcomes given a suggested resection mask using preoperative data only
Status epilepticus and thinning of the entorhinal cortex
Status epilepticus (SE) carries risks of morbidity and mortality. Experimental studies have implicated the entorhinal cortex in prolonged seizures; however, studies in large human cohorts are limited. We hypothesised that individuals with temporal lobe epilepsy (TLE) and a history of SE would have more severe entorhinal atrophy compared to others with TLE and no history of SE. 357 individuals with drug resistant temporal lobe epilepsy (TLE) and 100 healthy controls were scanned on a 3T MRI. For all subjects, the cortex was segmented, parcellated, and the thickness calculated from the T1-weighted anatomical scan. Subcortical volumes were derived similarly. Cohen's d and Wilcoxon rank-sum tests respectively were used to capture effect sizes and significance. Individuals with TLE and SE had reduced entorhinal thickness compared to those with TLE and no history of SE. The entorhinal cortex was more atrophic ipsilaterally (d = 0.51, p < 0.001) than contralaterally (d = 0.37, p = 0.01). Reductions in ipsilateral entorhinal thickness were present in both left TLE (n = 22:176, d = 0.78, p < 0.001), and right TLE (n = 19:140, d = 0.31, p = 0.04), albeit with a smaller effect size in right TLE. Several other regions exhibited atrophy in individuals with TLE, but these did not relate to a history of SE. These findings suggest potential involvement or susceptibility of the entorhinal cortex in prolonged seizures
Seizure pathways change on circadian and slower timescales in individual patients with focal epilepsy.
Personalized medicine requires that treatments adapt to not only the patient but also changing factors within each individual. Although epilepsy is a dynamic disorder characterized by pathological fluctuations in brain state, surprisingly little is known about whether and how seizures vary in the same patient. We quantitatively compared within-patient seizure network evolutions using intracranial electroencephalographic (iEEG) recordings of over 500 seizures from 31 patients with focal epilepsy (mean 16.5 seizures per patient). In all patients, we found variability in seizure paths through the space of possible network dynamics. Seizures with similar pathways tended to occur closer together in time, and a simple model suggested that seizure pathways change on circadian and/or slower timescales in the majority of patients. These temporal relationships occurred independent of whether the patient underwent antiepileptic medication reduction. Our results suggest that various modulatory processes, operating at different timescales, shape within-patient seizure evolutions, leading to variable seizure pathways that may require tailored treatment approaches
Independent components of human brain morphology
Quantification of brain morphology has become an important cornerstone in understanding brain structure. Measures of cortical morphology such as thickness and surface area are frequently used to compare groups of subjects or characterise longitudinal changes. However, such measures are often treated as independent from each other. A recently described scaling law, derived from a statistical physics model of cortical folding, demonstrates that there is a tight covariance between three commonly used cortical morphology measures: cortical thickness, total surface area, and exposed surface area. We show that assuming the independence of cortical morphology measures can hide features and potentially lead to misinterpretations. Using the scaling law, we account for the covariance between cortical morphology measures and derive novel independent measures of cortical morphology. By applying these new measures, we show that new information can be gained; in our example we show that distinct morphological alterations underlie healthy ageing compared to temporal lobe epilepsy, even on the coarse level of a whole hemisphere. We thus provide a conceptual framework for characterising cortical morphology in a statistically valid and interpretable manner, based on theoretical reasoning about the shape of the cortex
Status epilepticus and thinning of the entorhinal cortex
\ua9 2024 The AuthorsStatus epilepticus (SE) carries risks of morbidity and mortality. Experimental studies have implicated the entorhinal cortex in prolonged seizures; however, studies in large human cohorts are limited. We hypothesised that individuals with temporal lobe epilepsy (TLE) and a history of SE would have more severe entorhinal atrophy compared to others with TLE and no history of SE. 357 individuals with drug resistant temporal lobe epilepsy (TLE) and 100 healthy controls were scanned on a 3T MRI. For all subjects, the cortex was segmented, parcellated, and the thickness calculated from the T1-weighted anatomical scan. Subcortical volumes were derived similarly. Cohen\u27s d and Wilcoxon rank-sum tests respectively were used to capture effect sizes and significance. Individuals with TLE and SE had reduced entorhinal thickness compared to those with TLE and no history of SE. The entorhinal cortex was more atrophic ipsilaterally (d = 0.51, p < 0.001) than contralaterally (d = 0.37, p = 0.01). Reductions in ipsilateral entorhinal thickness were present in both left TLE (n = 22:176, d = 0.78, p < 0.001), and right TLE (n = 19:140, d = 0.31, p = 0.04), albeit with a smaller effect size in right TLE. Several other regions exhibited atrophy in individuals with TLE, but these did not relate to a history of SE. These findings suggest potential involvement or susceptibility of the entorhinal cortex in prolonged seizures
Structural brain network abnormalities and the probability of seizure recurrence after epilepsy surgery
OBJECTIVE: We assessed preoperative structural brain networks and clinical characteristics of patients with drug-resistant temporal lobe epilepsy (TLE) to identify correlates of postsurgical seizure recurrences. METHODS: We examined data from 51 patients with TLE who underwent anterior temporal lobe resection (ATLR) and 29 healthy controls. For each patient, using the preoperative structural, diffusion, and postoperative structural MRI, we generated 2 networks: presurgery network and surgically spared network. Standardizing these networks with respect to controls, we determined the number of abnormal nodes before surgery and expected to be spared by surgery. We incorporated these 2 abnormality measures and 13 commonly acquired clinical data from each patient into a robust machine learning framework to estimate patient-specific chances of seizures persisting after surgery. RESULTS: Patients with more abnormal nodes had a lower chance of complete seizure freedom at 1 year and, even if seizure-free at 1 year, were more likely to relapse within 5 years. The number of abnormal nodes was greater and their locations more widespread in the surgically spared networks of patients with poor outcome than in patients with good outcome. We achieved an area under the curve of 0.84 ± 0.06 and specificity of 0.89 ± 0.09 in predicting unsuccessful seizure outcomes (International League Against Epilepsy [ILAE] 3–5) as opposed to complete seizure freedom (ILAE 1) at 1 year. Moreover, the model-predicted likelihood of seizure relapse was significantly correlated with the grade of surgical outcome at year 1 and associated with relapses up to 5 years after surgery. CONCLUSION: Node abnormality offers a personalized, noninvasive marker that can be combined with clinical data to better estimate the chances of seizure freedom at 1 year and subsequent relapse up to 5 years after ATLR. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that node abnormality predicts postsurgical seizure recurrence
Epileptogenic networks in extra temporal lobe epilepsy
\ua9 2023 Massachusetts Institute of Technology.Extra temporal lobe epilepsy (eTLE) may involve heterogenous widespread cerebral networks. We investigated the structural network of an eTLE cohort, at the postulated epileptogenic zone later surgically removed, as a network node: the resection zone (RZ). We hypothesized patients with an abnormal connection to/from the RZ to have proportionally increased abnormalities based on topological proximity to the RZ, in addition to poorer post-operative seizure outcome. Structural and diffusion MRI were collected for 22 eTLE patients pre-and post-surgery, and for 29 healthy controls. The structural connectivity of the RZ prior to surgery, measured via generalized fractional anisotropy (gFA), was compared with healthy controls. Abnormal connections were identified as those with substantially reduced gFA (z < −1.96). For patients with one or more abnormal connections to/from the RZ, connections with closer topological distance to the RZ had higher proportion of abnormalities. The minority of the seizure-free patients (3/11) had one or more abnormal connections, while most non-seizure-free patients (8/11) had abnormal connections to the RZ. Our data suggest that eTLE patients with one or more abnormal structural connections to/from the RZ had more proportional abnormal connections based on topological distance to the RZ and associated with reduced chance of seizure freedom post-surgery
Epileptogenic networks in extra temporal lobe epilepsy
Extra temporal lobe epilepsy (eTLE) may involve heterogenous widespread cerebral networks. We investigated the structural network of an eTLE cohort, at the postulated epileptogenic zone later surgically removed, as a network node: the resection zone (RZ). We hypothesized patients with an abnormal connection to/from the RZ to have proportionally increased abnormalities based on topological proximity to the RZ, in addition to poorer post-operative seizure outcome. Structural and diffusion MRI were collected for 22 eTLE patients pre-and post-surgery, and for 29 healthy controls. The structural connectivity of the RZ prior to surgery, measured via generalized fractional anisotropy (gFA), was compared with healthy controls. Abnormal connections were identified as those with substantially reduced gFA (z < −1.96). For patients with one or more abnormal connections to/from the RZ, connections with closer topological distance to the RZ had higher proportion of abnormalities. The minority of the seizure-free patients (3/11) had one or more abnormal connections, while most non-seizure-free patients (8/11) had abnormal connections to the RZ. Our data suggest that eTLE patients with one or more abnormal structural connections to/from the RZ had more proportional abnormal connections based on topological distance to the RZ and associated with reduced chance of seizure freedom post-surgery
- …