3 research outputs found

    Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO<sub>2</sub>(110)

    No full text
    Optimizing the photovoltaic efficiency of dye-sensitized solar cells (DSSC) based on staggered gap heterojunctions requires a detailed understanding of sub-band gap transitions in the visible from the dye directly to the substrateā€™s conduction band (CB) (type-II DSSCs). Here, we calculate the optical absorption spectra and spatial distribution of bright excitons in the visible region for a prototypical DSSC, catechol on rutile TiO<sub>2</sub>(110), as a function of coverage and deprotonation of the OH anchoring groups. This is accomplished by solving the Betheā€“Salpeter equation (BSE) based on hybrid range-separated exchange and correlation functional (HSE06) density functional theory (DFT) calculations. Such a treatment is necessary to accurately describe the interfacial level alignment and the weakly bound charge transfer transitions that are the dominant absorption mechanism in type-II DSSCs. Our HSE06 BSE spectra agree semiquantitatively with spectra measured for catechol on anatase TiO<sub>2</sub> nanoparticles. Our results suggest deprotonation of catecholā€™s OH anchoring groups, while being nearly isoenergetic at high coverages, shifts the onset of the absorption spectra to lower energies, with a concomitant increase in photovoltaic efficiency. Further, the most relevant bright excitons in the visible region are rather intense charge transfer transitions with the electron and hole spatially separated in both the [110] and [001] directions. Such detailed information on the absorption spectra and excitons is only accessible via periodic models of the combined dye-substrate interface

    Revealing the Adsorption Mechanisms of Nitroxides on Ultrapure, Metallicity-Sorted Carbon Nanotubes

    No full text
    Carbon nanotubes are a natural choice as gas sensor components given their high surface to volume ratio, electronic properties, and capability to mediate chemical reactions. However, a realistic assessment of the interaction of the tube wall and the adsorption processes during gas phase reactions has always been elusive. Making use of ultraclean single-walled carbon nanotubes, we have followed the adsorption kinetics of NO<sub>2</sub> and found a physisorption mechanism. Additionally, the adsorption reaction directly depends on the metallic character of the samples. Franckā€“Condon satellites, hitherto undetected in nanotubeā€“NO<sub><i>x</i></sub> systems, were resolved in the N 1<i>s</i> X-ray absorption signal, revealing a weak chemisorption, which is intrinsically related to NO dimer molecules. This has allowed us to identify that an additional signal observed in the higher binding energy region of the core level C 1<i>s</i> photoemission signal is due to the Cī—»O species of ketene groups formed as reaction byproducts . This has been supported by density functional theory calculations. These results pave the way toward the optimization of nanotube-based sensors with tailored sensitivity and selectivity to different species at room temperature

    Understanding Energy-Level Alignment in Donorā€“Acceptor/Metal Interfaces from Core-Level Shifts

    No full text
    The molecule/metal interface is the key element in charge injection devices. It can be generally defined by a monolayer-thick blend of donor and/or acceptor molecules in contact with a metal surface. Energy barriers for electron and hole injection are determined by the offset from HOMO (highest occupied) and LUMO (lowest unoccupied) molecular levels of this contact layer with respect to the Fermi level of the metal electrode. However, the HOMO and LUMO alignment is not easy to elucidate in complex multicomponent, molecule/metal systems. We demonstrate that core-level photoemission from donorā€“acceptor/metal interfaces can be used to straightforwardly and transparently assess molecular-level alignment. Systematic experiments in a variety of systems show characteristic binding energy shifts in core levels as a function of molecular donor/acceptor ratio, irrespective of the molecule or the metal. Such shifts reveal how the level alignment at the molecule/metal interface varies as a function of the donorā€“acceptor stoichiometry in the contact blend
    corecore