31 research outputs found

    Abnormal mitochondrial L-arginine transport contributes to the pathogenesis of heart failure and rexoygenation injury

    Get PDF
    Impaired mitochondrial function is fundamental feature of heart failure (HF) and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO) metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury

    CXCR4 Antagonism Reduces Cardiac Fibrosis and Improves Cardiac Performance in Dilated Cardiomyopathy

    Get PDF
    Background: Myocardial fibrosis is a key pathologic finding in the failing heart and is implicated as a cause of increased ventricular stiffness and susceptibility to ventricular arrhythmia. Neurohormonal mediators such as aldosterone and angiotensin II are known to cause fibrosis in experimental models, however, clinical evidence for the reversal of fibrosis with relevant antagonists is limited. Recent studies suggest that inflammatory mediators may contribute to fibrosis. In dilated cardiomyopathy the mechanism for myocardial fibrosis is unclear and its implications on systolic function are not known.Methods and Results: We studied the effect of a highly selective antagonist of SDF-1/CXCR4 signaling, AMD3100, on the development of cardiac fibrosis and cardiac function in mice with dilated cardiomyopathy due to cardiac-specific transgenic overexpression of the stress-kinase, Mst1. AMD3100 significantly attenuated the progression of myocardial fibrosis and this was accompanied by significant improvements in diastolic and systolic performance as evaluated in isolated Langendorff perfused hearts. AMD3100 reduced BNP mRNA expression but did not alter the expression of Ca2+ handling genes. CXCR4 antagonism also reduced the abundance of splenic CD4+ T cells.Conclusion: This study demonstrates that CXCR4 pathway contributes to pathogenesis of cardiac fibrosis in dilated cardiomyopathy, and it represents a new potential therapeutic target in heart failure. The data also demonstrate that anti-fibrotic strategies can improve systolic performance

    CXCR4 Antagonism attenuates the development of diabetic cardiac fibrosis

    Full text link
    Heart failure (HF) is an increasingly recognized complication of diabetes. Cardiac fibrosis is an important causative mechanism of HF associated with diabetes. Recent data indicate that inflammation may be particularly important in the pathogenesis of cardiovascular fibrosis. We sought to determine the mechanism by which cardiac fibrosis develops and to specifically investigate the role of the CXCR4 axis in this process. Animals with type I diabetes (streptozotocin treated mice) or type II diabetes (Israeli Sand-rats) and controls were randomized to treatment with a CXCR4 antagonist, candesartan or vehicle control. Additional groups of mice also underwent bone marrow transplantation (GFP+ donor marrow) to investigate the potential role of bone marrow derived cell mobilization in the pathogenesis of cardiac fibrosis. Both type I and II models of diabetes were accompanied by the development of significant cardiac fibrosis. CXCR4 antagonism markedly reduced cardiac fibrosis in both models of diabetes, similar in magnitude to that seen with candesartan. In contrast to candesartan, the anti-fibrotic actions of CXCR4 antagonism occurred in a blood pressure independent manner. Whilst the induction of diabetes did not increase the overall myocardial burden of GFP+ cells, it was accompanied by an increase in GFP+ cells expressing the fibroblast marker alpha-smooth muscle actin and this was attenuated by CXCR4 antagonism. CXCR4 antagonism was also accompanied by increased levels of circulating regulatory T cells. Taken together the current data indicate that pharmacological inhibition of CXCR4 significantly reduces diabetes induced cardiac fibrosis, providing a potentially important therapeutic approach

    Cardioprotective Actions of the Annexin-A1 N-Terminal Peptide, Ac2-26, Against Myocardial Infarction

    Get PDF
    The anti-inflammatory, pro-resolving annexin-A1 protein acts as an endogenous brake against exaggerated cardiac necrosis, inflammation, and fibrosis following myocardial infarction (MI) in vivo. Little is known, however, regarding the cardioprotective actions of the N-terminal-derived peptide of annexin A1, Ac2-26, particularly beyond its anti-necrotic actions in the first few hours after an ischemic insult. In this study, we tested the hypothesis that exogenous Ac2-26 limits cardiac injury in vitro and in vivo. Firstly, we demonstrated that Ac2-26 limits cardiomyocyte death both in vitro and in mice subjected to ischemia-reperfusion (I-R) injury in vivo (Ac2-26, 1 mg/kg, i.v. just prior to post-ischemic reperfusion). Further, Ac2-26 (1 mg/kg i.v.) reduced cardiac inflammation (after 48 h reperfusion), as well as both cardiac fibrosis and apoptosis (after 7-days reperfusion). Lastly, we investigated whether Ac2-26 preserved cardiac function after MI. Ac2-26 (1 mg/kg/day s.c., osmotic pump) delayed early cardiac dysfunction 1 week post MI, but elicited no further improvement 4 weeks after MI. Taken together, our data demonstrate the first evidence that Ac2-26 not only preserves cardiomyocyte survival in vitro, but also offers cardioprotection beyond the first few hours after an ischemic insult in vivo. Annexin-A1 mimetics thus represent a potential new therapy to improve cardiac outcomes after MI

    Old Drug, New Trick: Tilorone, a Broad-Spectrum Antiviral Drug as a Potential Anti-Fibrotic Therapeutic for the Diseased Heart

    Get PDF
    Cardiac fibrosis is associated with most forms of cardiovascular disease. No reliable therapies targeting cardiac fibrosis are available, thus identifying novel drugs that can resolve or prevent fibrosis is needed. Tilorone, an antiviral agent, can prevent fibrosis in a mouse model of lung disease. We investigated the anti-fibrotic effects of tilorone in human cardiac fibroblasts in vitro by performing a radioisotopic assay for [3H]-proline incorporation as a proxy for collagen synthesis. Exploratory studies in human cardiac fibroblasts treated with tilorone (10 µM) showed a significant reduction in transforming growth factor-β induced collagen synthesis compared to untreated fibroblasts. To determine if this finding could be recapitulated in vivo, mice with established pathological remodelling due to four weeks of transverse aortic constriction (TAC) were administered tilorone (50 mg/kg, i.p) or saline every third day for eight weeks. Treatment with tilorone was associated with attenuation of fibrosis (assessed by Masson’s trichrome stain), a favourable cardiac gene expression profile and no further deterioration of cardiac systolic function determined by echocardiography compared to saline treated TAC mice. These data demonstrate that tilorone has anti-fibrotic actions in human cardiac fibroblasts and the adult mouse heart, and represents a potential novel therapy to treat fibrosis associated with heart failure

    N-acetylcysteine attenuates the development of cardiac fibrosis and remodeling in a mouse model of heart failure

    No full text
    Oxidative stress plays a central role in the pathogenesis of heart failure. We aimed to determine whether the antioxidant N-acetylcysteine can attenuate cardiac fibrosis and remodeling in a mouse model of heart failure. Minipumps were implanted subcutaneously in wild-type mice (n = 20) and mice with cardiomyopathy secondary to cardiac specific overexpression of mammalian sterile 20-like kinase 1 (MST-1; n = 18) to administer N-acetylcysteine (40 mg/kg per day) or saline for a period of 8 weeks. At the end of this period, cardiac remodeling and function was assessed via echocardiography. Fibrosis, oxidative stress, and expression of collagen types I and III were quantified in heart tissues. Cardiac perivascular and interstitial fibrosis were greater by 114% and 209%, respectively, in MST-1 compared to wild type (

    Serelaxin attenuates renal inflammation and fibrosis in a mouse model of dilated cardiomyopathy

    No full text
    New Findings: What is the central question of this study? The aim was to determine the renoprotective effects of serelaxin in the setting of chronic heart failure. What are the main findings and its importance? Our data indicate that serelaxin can reduce renal fibrosis and inflammation in experimental heart failure. Currently, there are no effective treatments to rescue renal function in heart failure patients, and our data suggest that serelaxin might have the potential to reduce renal fibrosis and inflammation in heart failure. Abstract: Serelaxin has been demonstrated to attenuate renal fibrosis and inflammation in cardiorenal disease. In the present study, we tested the hypothesis that serelaxin can prevent the decline in renal function in dilated cardiomyopathy (DCM) by targeting renal fibrosis and inflammation. Male transgenic mice with DCM (n\ua0=\ua016) and their wild-type littermates (WT; n\ua0=\ua020) were administered either vehicle or serelaxin (500\ua0μg\ua0kg\ua0day; subcutaneous minipumps; 8\ua0weeks). Cardiac function was assessed via echocardiography before and during the eighth week of serelaxin treatment. Renal function and inflammation as well as cardiac and renal fibrosis were assessed at the end of the study. Serelaxin had minimal effect on cardiac function (P\ua0≥\ua00.99). Tubulointerstitial and glomerular fibrosis were ∼3-fold greater in vehicle-treated DCM mice compared with vehicle-treated WT mice (P\ua0≤\ua00.001). Renal mRNA expression of Tnfα and Il1α were ∼4- and ∼3-fold greater, respectively, in vehicle-treated DCM mice compared with vehicle-treated WT mice (P\ua0≤\ua00.05). Tubulointerstitial and glomerular fibrosis were 46 and 45% less, respectively, in serelaxin-treated DCM mice than in vehicle-treated DCM mice (P\ua0≤\ua00.01). Renal cortical mRNA expression of Tnfα and Il1α were 56 and 58% less, respectively, in the former group compared with the latter (P\ua0≤\ua00.05). The urinary albumin:creatinine ratio was ∼3-fold greater in vehicle-treated DCM mice compared with vehicle-treated WT mice (P\ua0=\ua00.02). The urinary albumin:creatinine ratio was not significantly different between vehicle-treated DCM mice and serelaxin-treated DCM mice (P\ua0=\ua00.38). These data suggest that serelaxin can attenuate renal fibrosis and inflammation and has the potential to exert renoprotective effects in DCM
    corecore