3 research outputs found

    Interactions between β2-Adrenoceptor Ligands and Membrane: Atomic-Level Insights from Magic-Angle Spinning NMR

    No full text
    To understand the relationship between structural properties of the β2-adrenoceptor ligands and their interactions with membranes, we have investigated the location and distribution of five β2 agonists with distinct clinical durations and onsets of action (indacaterol, two indacaterol analogues, salmeterol and formoterol) in monounsaturated model membranes using magic angle spinning NMR to measure these interactions through both <sup>1</sup>H nuclear Overhauser enhancement (NOE) and paramagnetic relaxation enhancement (PRE) techniques. The hydrophilic aromatic groups of all five β2 agonists show maximum distribution in the lipid/water interface, but distinct location and dynamic behavior were observed for the lipophilic aromatic rings. Our study elucidates at atomic level that the hydrophobicity and substitution geometry of lipophilic groups play important roles in compound–lipid interactions

    Optimization of Platelet-Derived Growth Factor Receptor (PDGFR) Inhibitors for Duration of Action, as an Inhaled Therapy for Lung Remodeling in Pulmonary Arterial Hypertension

    No full text
    A series of potent PDGFR inhibitors has been identified. The series was optimized for duration of action in the lung. A novel kinase occupancy assay was used to directly measure target occupancy after i.t. dosing. Compound <b>25</b> shows 24 h occupancy of the PDGFR kinase domain, after a single i.t. dose and has efficacy at 0.03 mg/kg, in the rat moncrotaline model of pulmonary arterial hypertension. Examination of PK/PD data from the optimization effort has revealed in vitro:in vivo correlations which link duration of action in vivo with low permeability and high basicity and demonstrate that nonspecific binding to lung tissue increases with lipophilicity

    Optimization of Platelet-Derived Growth Factor Receptor (PDGFR) Inhibitors for Duration of Action, as an Inhaled Therapy for Lung Remodeling in Pulmonary Arterial Hypertension

    No full text
    A series of potent PDGFR inhibitors has been identified. The series was optimized for duration of action in the lung. A novel kinase occupancy assay was used to directly measure target occupancy after i.t. dosing. Compound <b>25</b> shows 24 h occupancy of the PDGFR kinase domain, after a single i.t. dose and has efficacy at 0.03 mg/kg, in the rat moncrotaline model of pulmonary arterial hypertension. Examination of PK/PD data from the optimization effort has revealed in vitro:in vivo correlations which link duration of action in vivo with low permeability and high basicity and demonstrate that nonspecific binding to lung tissue increases with lipophilicity
    corecore