17,470 research outputs found

    A Damping of the de Haas-van Alphen Oscillations in the superconducting state

    Full text link
    Deploying a recently developed semiclassical theory of quasiparticles in the superconducting state we study the de Haas-van Alphen effect. We find that the oscillations have the same frequency as in the normal state but their amplitude is reduced. We find an analytic formulae for this damping which is due to tunnelling between semiclassical quasiparticle orbits comprising both particle-like and hole-like segments. The quantitative predictions of the theory are consistent with the available data.Comment: 7 pages, 5 figure

    A Highly Ordered Faraday-Rotation Structure in the Interstellar Medium

    Get PDF
    We describe a Faraday-rotation structure in the Interstellar Medium detected through polarimetric imaging at 1420 MHz from the Canadian Galactic Plane Survey (CGPS). The structure, at l=91.8, b=-2.5, has an extent of ~2 degree, within which polarization angle varies smoothly over a range of ~100 degree. Polarized intensity also varies smoothly, showing a central peak within an outer shell. This region is in sharp contrast to its surroundings, where low-level chaotic polarization structure occurs on arcminute scales. The Faraday-rotation structure has no counterpart in radio total intensity, and is unrelated to known objects along the line of sight, which include a Lynds Bright Nebula, LBN 416, and the star cluster M39 (NGC7092). It is interpreted as a smooth enhancement of electron density. The absence of a counterpart, either in optical emission or in total intensity, establishes a lower limit to its distance. An upper limit is determined by the strong beam depolarization in this direction. At a probable distance of 350 +/- 50 pc, the size of the object is 10 pc, the enhancement of electron density is 1.7 cm-3, and the mass of ionized gas is 23 M_sun. It has a very smooth internal magnetic field of strength 3 microG, slightly enhanced above the ambient field. G91.8-2.5 is the second such object to be discovered in the CGPS, and it seems likely that such structures are common in the Magneto-Ionic Medium.Comment: 16 pages, 5 figures, ApJ accepte

    Executive function in first-episode schizophrenia

    Get PDF
    BACKGROUND: We tested the hypothesis that schizophrenia is primarily a frontostriatal disorder by examining executive function in first-episode patients. Previous studies have shown either equal decrements in many cognitive domains or specific deficits in memory. Such studies have grouped test results or have used few executive measures, thus, possibly losing information. We, therefore, measured a range of executive ability with tests known to be sensitive to frontal lobe function. METHODS: Thirty first-episode schizophrenic patients and 30 normal volunteers, matched for age and NART IQ, were tested on computerized test of planning, spatial working memory and attentional set shifting from the Cambridge Automated Neuropsychological Test Battery. Computerized and traditional tests of memory were also administered for comparison. RESULTS: Patients were worse on all tests but the profile was non-uniform. A componential analysis indicated that the patients were characterized by a poor ability to think ahead and organize responses but an intact ability to switch attention and inhibit prepotent responses. Patients also demonstrated poor memory, especially for free recall of a story and associate learning of unrelated word pairs. CONCLUSIONS: In contradistinction to previous studies, schizophrenic patients do have profound executive impairments at the beginning of the illness. However, these concern planning and strategy use rather than attentional set shifting, which is generally unimpaired. Previous findings in more chronic patients, of severe attentional set shifting impairment, suggest that executive cognitive deficits are progressive during the course of schizophrenia. The finding of severe mnemonic impairment at first episode suggests that cognitive deficits are not restricted to one cognitive domain

    Correlated radial velocity and X-ray variations in HD 154791/4U 1700+24

    Get PDF
    We present evidence for approximately 400-d variations in the radial velocity of HD 154791 (V934 Her), the suggested optical counterpart of 4U 1700+24. The variations are correlated with the previously reported approximately 400 d variations in the X-ray flux of 4U 1700+24, which supports the association of these two objects, as well as the identification of this system as the second known X-ray binary in which a neutron star accretes from the wind of a red giant. The HD 154791 radial velocity variations can be fit with an eccentric orbit with period 404 +/- 3 d, amplitude K=0.75 +/- 0.12 km/s and eccentricity e=0.26 +/- 0.15. There are also indications of variations on longer time scales >~ 2000 d. We have re-examined all available ASM data following an unusually large X-ray outburst in 1997-98, and confirm that the 1-d averaged 2-10 keV X-ray flux from 4U 1700+24 is modulated with a period of 400 +/- 20 d. The mean profile of the persistent X-ray variations was approximately sinusoidal, with an amplitude of 0.108 +/- 0.012 ASM count/s (corresponding to 31% rms). The epoch of X-ray maximum was approximately 40 d after the time of periastron according to the eccentric orbital fit. If the 400 d oscillations from HD 154791/4U 1700+24 are due to orbital motion, then the system parameters are probably close to those of the only other neutron-star symbiotic-like binary, GX 1+4. We discuss the similarities and differences between these two systems.Comment: 6 pages, 2 figures; accepted by Ap

    Limits on the Boron Isotopic Ratio in HD 76932

    Full text link
    Data in the 2090 A B region of HD 76932 have been obtained at high S/N using the HST GHRS echelle at a resolution of 90,000. This wavelength region has been previously identified as a likely candidate for observing the B11/B10 isotopic splitting. The observations do not match a calculated line profile extremely well at any abundance for any isotopic ratio. If the B abundance previously determined from observations at 2500 A is assumed, the calculated line profile is too weak, indicating a possible blending line. Assuming that the absorption at 2090 A is entirely due to boron, the best-fit total B abundance is higher than but consistent with that obtained at 2500 A, and the best-fit isotopic ratio (B11/B10) is in the range ~10:1 to ~4:1. If the absorption is not entirely due to B and there is an unknown blend, the best-fit isotopic ratio may be closer to 1:1. Future observations of a similar metal-poor star known to have unusually low B should allow us to distinguish between these two possibilities. The constraints that can be placed on the isotopic ratio based on comparisons with similar observations of HD 102870 and HD 61421 (Procyon) are also discussed.Comment: Accepted for Nov 1998 Ap

    Cellular Scaling Rules of Insectivore Brains

    Get PDF
    Insectivores represent extremes in mammalian body size and brain size, retaining various “primitive” morphological characteristics, and some species of Insectivora are thought to share similarities with small-bodied ancestral eutherians. This raises the possibility that insectivore brains differ from other taxa, including rodents and primates, in cellular scaling properties. Here we examine the cellular scaling rules for insectivore brains and demonstrate that insectivore scaling rules overlap somewhat with those for rodents and primates such that the insectivore cortex shares scaling rules with rodents (increasing faster in size than in numbers of neurons), but the insectivore cerebellum shares scaling rules with primates (increasing isometrically). Brain structures pooled as “remaining areas” appear to scale similarly across all three mammalian orders with respect to numbers of neurons, and the numbers of non-neurons appear to scale similarly across all brain structures for all three orders. Therefore, common scaling rules exist, to different extents, between insectivore, rodent, and primate brain regions, and it is hypothesized that insectivores represent the common aspects of each order. The olfactory bulbs of insectivores, however, offer a noteworthy exception in that neuronal density increases linearly with increasing structure mass. This implies that the average neuronal cell size decreases with increasing olfactory bulb mass in order to accommodate greater neuronal density, and represents the first documentation of a brain structure gaining neurons at a greater rate than mass. This might allow insectivore brains to concentrate more neurons within the olfactory bulbs without a prohibitively large and metabolically costly increase in structure mass

    Heterodyne Ladar System Efficiency Enhancement Using Single-mode Optical Fiber Mixers

    Get PDF
    A theoretical performance analysis of a heterodyne ladar system incorporating a single-mode fiber receiver has been performed. For our purposes, the performance parameters of interest are the coupling and mixing efficiency of the ladar receiver, as they relate to the overall system carrier-to-noise ratio. For a receiver incorporating a single-mode fiber mixer, the received and local-oscillator fields are matched both spatially and temporally at the detector, yielding 100% mixing efficiency. We have therefore focused our efforts on determining an expression for the efficiency with which a diffuse return from a purely speckle target can be coupled into the receiving leg of a monostatic, untruncated cw ladar system. Through numerical analysis, the expected coupling efficiency for a ladar system with negligible truncation of the transmit beam has been determined to be 30.6%

    Radio Observations of the Supernova Remnant Candidate G312.5-3.0

    Full text link
    The radio images from the Parkes-MIT-NRAO (PMN) Southern Sky Survey at 4850 MHz have revealed a number of previously unknown radio sources. One such source, G312.5-3.0 (PMN J1421-6415), has been observed using the multi-frequency capabilities of the Australia Telescope Compact Array (ATCA) at frequencies of 1380 MHz and 2378 MHz. Further observations of the source were made using the Molonglo Observatory Synthesis Telescope (MOST) at a frequency of 843 MHz. The source has an angular size of 18 arcmin and has a distinct shell structure. We present the reduced multi-frequency observations of this source and provide a brief argument for its possible identification as a supernova remnant.Comment: 5 pages, 5 figures, Accepted for publication in MNRA

    Fast spectroscopic variations on rapidly-rotating, cool dwarfs. 3: Masses of circumstellar absorbing clouds on AB Doradus

    Get PDF
    New time-resolved H alpha, Ca II H and K and Mg II h and k spectra of the rapidly-rotating K0 dwarf star AB Doradus (= HD 36705). The transient absorption features seen in the H alpha line are also present in the Ca II and Mg II resonance lines. New techniques are developed for measuring the average strength of the line absorption along lines of sight intersecting the cloud. These techniques also give a measure of the projected cloud area. The strength of the resonance line absorption provides useful new constraints on the column densities, projected surface areas, temperatures and internal turbulent velocity dispersions of the circumstellar clouds producing the absorption features. At any given time the star appears to be surrounded by at least 6 to 10 clouds with masses in the range 2 to 6 x 10(exp 17) g. The clouds appear to have turbulent internal velocity dispersions of order 3 to 20 km/s, comparable with the random velocities of discrete filamentary structures in solar quiescent prominences. Night-to-night changes in the amount of Ca II resonance line absorption can be explained by changes in the amplitude of turbulent motions in the clouds. The corresponding changes in the total energy of the internal motions are of order 10(exp 29) erg per cloud. Changes of this magnitude could easily be activated by the frequent energetic (approximately 10(exp 34) erg) x ray flares seen on this star
    corecore