14,874 research outputs found

    Modified Dark Matter: Relating Dark Energy, Dark Matter and Baryonic Matter

    Get PDF
    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating Universe with positive cosmological constant (Λ\Lambda), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ\Lambda. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ\Lambda, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain non-local aspects of the quanta of modified dark matter, which may lead to novel non-particle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles

    Knowledge management in a research & development environment - The Integration of company culture and technology

    Get PDF
    This thesis will show that understanding company structure and company culture are significantly more important than the actual technological tools an organization uses to implement successful knowledge management. An examination of company structure and cultural enablers will be followed by a review of some of the most widespread knowledge management tools to illustrate how knowledge management can be successfully put into practice

    Testing Modified Dark Matter with Galaxy Clusters: Does Dark Matter know about the Cosmological Constant?

    Get PDF
    We discuss the possibility that the cold dark matter mass profiles contain information on the cosmological constant, and that such information constrains the nature of cold dark matter (CDM). We call this approach Modified Dark Matter (MDM). In particular, we examine the ability of MDM to explain the observed mass profiles of 13 galaxy clusters. Using general arguments from gravitational thermodynamics, we provide a theoretical justification for our MDM mass profile and successfully compare it to the NFW mass profiles both on cluster and galactic scales. Our results suggest that indeed the CDM mass profiles contain information about the cosmological constant in a non-trivial way

    A Damping of the de Haas-van Alphen Oscillations in the superconducting state

    Full text link
    Deploying a recently developed semiclassical theory of quasiparticles in the superconducting state we study the de Haas-van Alphen effect. We find that the oscillations have the same frequency as in the normal state but their amplitude is reduced. We find an analytic formulae for this damping which is due to tunnelling between semiclassical quasiparticle orbits comprising both particle-like and hole-like segments. The quantitative predictions of the theory are consistent with the available data.Comment: 7 pages, 5 figure

    Testing MONDian Dark Matter with Galactic Rotation Curves

    Get PDF
    MONDian dark matter (MDM) is a new form of dark matter quantum that naturally accounts for Milgrom's scaling, usually associated with modified Newtonian dynamics (MOND), and theoretically behaves like cold dark matter (CDM) at cluster and cosmic scales. In this paper, we provide the first observational test of MDM by fitting rotation curves to a sample of 30 local spiral galaxies (z approximately 0.003). For comparison, we also fit the galactic rotation curves using MOND, and CDM. We find that all three models fit the data well. The rotation curves predicted by MDM and MOND are virtually indistinguishable over the range of observed radii (~1 to 30 kpc). The best-fit MDM and CDM density profiles are compared. We also compare with MDM the dark matter density profiles arising from MOND if Milgrom's formula is interpreted as Newtonian gravity with an extra source term instead of as a modification of inertia. We find that discrepancies between MDM and MOND will occur near the center of a typical spiral galaxy. In these regions, instead of continuing to rise sharply, the MDM mass density turns over and drops as we approach the center of the galaxy. Our results show that MDM, which restricts the nature of the dark matter quantum by accounting for Milgrom's scaling, accurately reproduces observed rotation curves.Comment: Preprint number IPMU13-0147. Accepted for publication in Ap

    On the Spin History of the X-ray Pulsar in Kes 73: Further Evidence For an Utramagnetized Neutron Star

    Get PDF
    In previous papers, we presented the discovery of a 12-s X-ray pulsar in the supernova remnant Kes 73, providing the first direct evidence for an ultramagnetized neutron star, a magnetar, with an equivalent dipole field of nearly twenty times the quantum critical magnetic field. Our conclusions were based on two epochs of measurement of the spin, along with an age estimate of the host supernova remnant. Herein, we present a spin chronology of the pulsar using additional GINGA, ASCA, XTE, & SAX datasets spanning over a decade. Timing and spectral analysis confirms our initial results and severely limit an accretion origin for the observed flux. Over the 10 year baseline, the pulsar is found to undergo a rapid, constant spindown, while maintaining a steady flux and an invariant pulse profile. Within the measurement uncertainties, no systematic departures from a linear spin-down are found - departures as in the case of glitches or simply stochastic fluctuations in the pulse times-of-arrival (e.g. red timing noise). We suggest that this pulsar is akin to the soft gamma-ray repeaters, however, it is remarkably stable and has yet to display similar outbursts; future gamma-ray activity from this object is likely.Comment: 6 pages with 3 embedded figures, LaTex, emulateapj.sty. Submitted to the ApJ Letter
    • …
    corecore