2,380 research outputs found

    Movements of Channel Catfish and Flathead Catfish in Beaver Reservoir, Northwest Arkansas

    Get PDF
    A total of 497 channel catfish, Ictalurus punctatus, and flathead catfish, Pylodictis olivaris. were tagged in Beaver Reservoir during two November-April tagging periods (1967-68 and 1968-69); total recaptures were 9.5 and 11.7% respectively. The longest time between tagging and recapture was 1622 days (4.4 years) for channel catfish and 494 days (1.4 years) for flathead catfish. The longest distances traveled were 43.1 km by a channel catfish and 44.3 km by a flathead catfish. Fisherman returns indicated that catfish were caught primarily from April through July. The many recaptures, even after long periods, within 1.6 km of the tagging point, suggested that fish moved little, or had homing tendencies. Captures of fish in trap nets indicated that rainfall and inflow possibly stimulated movements of channel catfish during the winter and early spring

    Methodological Issues in Multistage Genome-Wide Association Studies

    Full text link
    Because of the high cost of commercial genotyping chip technologies, many investigations have used a two-stage design for genome-wide association studies, using part of the sample for an initial discovery of ``promising'' SNPs at a less stringent significance level and the remainder in a joint analysis of just these SNPs using custom genotyping. Typical cost savings of about 50% are possible with this design to obtain comparable levels of overall type I error and power by using about half the sample for stage I and carrying about 0.1% of SNPs forward to the second stage, the optimal design depending primarily upon the ratio of costs per genotype for stages I and II. However, with the rapidly declining costs of the commercial panels, the generally low observed ORs of current studies, and many studies aiming to test multiple hypotheses and multiple endpoints, many investigators are abandoning the two-stage design in favor of simply genotyping all available subjects using a standard high-density panel. Concern is sometimes raised about the absence of a ``replication'' panel in this approach, as required by some high-profile journals, but it must be appreciated that the two-stage design is not a discovery/replication design but simply a more efficient design for discovery using a joint analysis of the data from both stages. Once a subset of highly-significant associations has been discovered, a truly independent ``exact replication'' study is needed in a similar population of the same promising SNPs using similar methods.Comment: Published in at http://dx.doi.org/10.1214/09-STS288 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Problem-Based Learning in Mathematics

    Get PDF
    A teacher of mathematics has a great opportunity. If he fills his allotted time with drilling his students in routine operations, he kills their interest, hampers their intellectual development, and misuses his opportunity. But if he challenges the curiosity of his students by setting them problems proportionate to their knowledge and helps them to solve their problems with stimulating questions, he may give them a taste for, and some independent means of, independent thinking

    Quantum fields, cosmological constant and symmetry doubling

    Full text link
    Energy-parity has been introduced by Kaplan and Sundrum as a protective symmetry that suppresses matter contributions to the cosmological constant [KS05]. It is shown here that this symmetry, schematically Energy --> - Energy, arises in the Hilbert space representation of the classical phase space dynamics of matter. Consistently with energy-parity and gauge symmetry, we generalize the Liouville operator and allow a varying gauge coupling, as in "varying alpha" or dilaton models. In this model, classical matter fields can dynamically turn into quantum fields (Schroedinger picture), accompanied by a gauge symmetry change -- presently, U(1) --> U(1) x U(1). The transition between classical ensemble theory and quantum field theory is governed by the varying coupling, in terms of a one-parameter deformation of either limit. These corrections introduce diffusion and dissipation, leading to decoherence.Comment: Replaced by published version, no change in contents - Int. J. Theor. Phys. (2007

    Zero temperature string breaking in lattice quantum chromodynamics

    Get PDF
    The separation of a heavy quark and antiquark pair leads to the formation of a tube of flux, or "string", which should break in the presence of light quark-antiquark pairs. This expected zero-temperature phenomenon has proven elusive in simulations of lattice QCD. We study mixing between the string state and the two-meson decay channel in QCD with two flavors of dynamical sea quarks. We confirm that mixing is weak and find that it decreases at level crossing. While our study does not show direct effects of internal quark loops, our results, combined with unitarity, give clear confirmation of string breaking.Comment: 20 pages, 7 figures. With small clarifications and two additions to references. Submitted to Phys. Rev.

    Maxwell-Chern-Simons Vortices and Holographic Superconductors

    Full text link
    We investigate probe limit vortex solutions of a charged scalar field in Einstein-Maxwell theory in 3+1 dimensions, for an asymptotically AdS Schwarzschild black hole metric with the addition of an axionic coupling to the Maxwell field. We show that the inclusion of such a term, together with a suitable potential for the axion field, can induce an effective Chern-Simons term on the 2+1 dimensional boundary. We obtain numerical solutions of the equations of motion and find Maxwell-Chern-Simons like magnetic vortex configurations, where the magnetic field profile varies with the size of the effective Chern-Simons coupling. The axion field has a non-trivial profile inside the AdS bulk but does not condense at spatial infinity.Comment: 17 pages, 5 figures, version accepted for publication in JHE

    The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin

    Get PDF
    Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition
    • …
    corecore