2,543 research outputs found
Unifying first principle theoretical predictions and experimental measurements of size effects on thermal transport in SiGe alloys
In this work, we demonstrate the correspondence between first principle
calculations and experimental measurements of size effects on thermal transport
in SiGe alloys. Transient thermal grating (TTG) is used to measure the
effective thermal conductivity. The virtual crystal approximation under the
density functional theory (DFT) framework combined with impurity scattering is
used to determine the phonon properties for the exact alloy composition of the
measured samples. With these properties, classical size effects are calculated
for the experimental geometry of reflection mode TTG using the
recently-developed variational solution to the phonon Boltzmann transport
equation (BTE), which is verified against established Monte Carlo simulations.
We find agreement between theoretical predictions and experimental measurements
in the reduction of thermal conductivity (as much as 25\% of the bulk
value) across grating periods spanning one order of magnitude. This work
provides a framework for the tabletop study of size effects on thermal
transport
Implications for the origin of dwarf early-type galaxies: a detailed look at the isolated rotating dwarf early-type galaxy CG 611, with ramifications for the Fundamental Plane's (S_K)^2 kinematic scaling and the spin-ellipticity diagram
Selected from a sample of nine, isolated, dwarf early-type galaxies (ETGs)
having the same range of kinematic properties as dwarf ETGs in clusters, we use
CG 611 (LEDA 2108986) to address the Nature versus Nurture debate regarding the
formation of dwarf ETGs. The presence of faint disk structures and rotation
within some cluster dwarf ETGs has often been heralded as evidence that they
were once late-type spiral or dwarf irregular galaxies prior to experiencing a
cluster-induced transformation into an ETG. However, CG 611 also contains
significant stellar rotation (~20 km/s) over its inner half light radius,
R_(e,maj)=0.71 kpc, and its stellar structure and kinematics resemble those of
cluster ETGs. In addition to hosting a faint young nuclear spiral within a
possible intermediate-scale stellar disk, CG 611 has accreted an
intermediate-scale, counter-rotating gas disk. It is therefore apparent that
dwarf ETGs can be built by accretion events, as opposed to disk-stripping
scenarios. We go on to discuss how both dwarf and ordinary ETGs with
intermediate-scale disks, whether under (de)construction or not, are not fully
represented by the kinematic scaling S_0.5=sqrt{ 0.5(V_rot)^2 + sigma^2 }, and
we also introduce a modified spin-ellipticity diagram, lambda(R)-epsilon(R),
with the potential to track galaxies with such disks.Comment: 15 pages (includes 9 figures and an extensive 2+ page reference list
Millimeter wave imaging : a historical review
The SPIE Passive and Active Millimeter Wave Imaging conference has provided an annual focus and forum for practitioners in the field of millimeter wave imaging for the past two decades. To celebrate the conference's twentieth anniversary we present a historical review of the evolution of millimeter wave imaging over the past twenty years. Advances in device technology play a fundamental role in imaging capability whilst system architectures have also evolved. Imaging phenomenology continues to be a crucial topic underpinning the deployment of millimeter wave imaging in diverse applications such as security, remote sensing, non-destructive testing and synthetic vision.Publisher PD
Recommended from our members
Categorising Visual Hallucinations in Early Parkinson's Disease.
BACKGROUND: Visual hallucinations (VHs) are common in Parkinson's disease (PD), with prevalence ranging from 27-50% in cross-sectional cohorts of patients with well-established disease. However, minor hallucinations may occur earlier in the disease process than has been previously reported. OBJECTIVE: We sought to categorise VHs in a cohort of newly diagnosed PD patients and establish their relationship to other clinical features. METHODS: Newly diagnosed PD participants (n = 154) were recruited as part of the Incidence of Cognitive Impairment in Cohorts with Longitudinal Evaluation in PD (ICICLE-PD) study. Participants completed the Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS III), Montreal Cognitive Assessment (MoCA) and Parkinson's Disease Questionnaire (PDQ-39) to assess motor severity, cognition and quality of life (QoL), respectively. VHs were classified using the North East Visual Hallucinations Inventory. Hierarchical regression was used to build predictive models of motor severity, QoL and cognition. RESULTS: 22% (n = 34) of participants experienced recurrent VHs with minor VHs being most frequently reported (64.7% of hallucinators). Complex VHs were present in 32.4% of hallucinating participants. Linear regression showed VHs predicted poorer PDQ-39 and MoCA scores (β= 0.201, p = 0.006 and β= - 0.167, p = 0.01, respectively) but not motor severity (p > 0.05). CONCLUSIONS: Over a fifth of people with newly diagnosed PD reported recurrent VHs; minor hallucinations were the most common, although a small proportion reported complex VHs. Recurrent VHs were found to be a significant independent predictor of cognitive function and QoL but not motor severity. Our findings highlight the importance of screening for VHs at diagnosis.ICICLE-PD was funded by Parkinson’s UK (J-0802, G-1301, G-1507). The research was supported by the Lockhart Parkinson’s Disease Research Fund, the National Institute for Health Research (NIHR) Newcastle Biomedical Research Unit based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University and a NIHR Biomedical Research Centre award to the University of Cambridge/Addenbrooke’s Hospital
A New Population of High-z, Dusty Lyα Emitters and Blobs Discovered by WISE: Feedback Caught in the Act?
By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 ≾ z ≾ 4.6 dusty Lyα emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Lyα "blobs" (LABs). The objects have a surface density of only ~0.1 deg^(–2), making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L IR ≳ 10^(13)-10^(14) L_☉) and have warm colors. They are typically more luminous and warmer than other dusty, z ~ 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Lyα, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy
Under the microscope: Single molecule symposium at the University of Michigan, 2006
In recent years, a revolution has occurred in the basic sciences, which exploits novel single molecule detection and manipulation tools to track and analyze biopolymers in unprecedented detail. A recent Gordon Research Conference style meeting, hosted by the University of Michigan, highlighted current status and future perspectives of this rising field as researchers begin to integrate it with mainstream biology and nanotechnology. © 2006 Wiley Periodicals, Inc. Biopolymers 85:106–114, 2007Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55865/1/20621_ftp.pd
Pro-Saccades Predict Cognitive Decline in Parkinson's Disease: ICICLE-PD.
BACKGROUND: Cumulative dementia incidence in Parkinson's disease (PD) is significant, with major personal and socioeconomic impacts on individuals with PD and their carers. Early identification of dementia risk is vital to ensuring optimal intervention. Saccadic deficits often distinguish neurodegenerative disorders and cognitive impairment, but their ability to predict cognitive decline in PD has yet to be determined. The aims of this study were to (1) evaluate baseline (6.4 ± 6.1 months since PD diagnosis) differences in pro-saccadic metrics between those with early PD and healthy age-matched adults; and (2) assess the ability of baseline pro-saccades to predict subsequent cognitive decline over 4.5 years. METHODS: One hundred and forty-one PD and 90 age-matched participants recruited at diagnosis underwent saccadometric assessment of pro-saccades at baseline and had cognition assessed at baseline, 18, 36, and 54 months. Pro-saccadic characteristics included latency, duration, amplitude, peak, and average velocity. Cognitive assessment included executive function, attention, fluctuating attention, and memory. Linear mixed-effects models examined pro-saccadic metrics as predictors of cognitive decline over 54 months. RESULTS: Pro-saccades were significantly impaired at baseline in PD compared with controls. Pro-saccadic characteristics of latency, duration, peak, and average velocity predicted decline in global cognition, executive function, attention, and memory over 54 months in PD. In addition, only reduction in global cognition and attention were predicted by pro-saccadic metrics in age-matched adults, indicating that PD findings were not purely age related. CONCLUSIONS: Saccadic characteristics are impaired in early PD and are predictive of cognitive decline in several domains. Assessment of saccades may provide a useful non-invasive biomarker for long-term PD cognitive decline in early disease. © 2019 International Parkinson and Movement Disorder Society.This work was funded by grants from Parkinson’s UK (J-0802, G-1301, G-1507) and Lockhart Parkinson’s Disease Research Fund. The research was supported by the National Institute for Health Research (NIHR) Newcastle Biomedical Research Unit based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University and a NIHR Biomedical Research Centre award to the University of Cambridge/Addenbrooke’s Hospital
Recommended from our members
Tahiti: Geochemical evolution of a French Polynesian volcano
The island of Tahiti, the largest in French Polynesia, comprises two major volcanoes aligned NW-SE, parallel with the general trend of the Society Islands hotspot track. Rocks form this volcanic system are basalts transitional to tholeiites, alkali basalts, basanites, picrites, and evolved lavas. Through K-Ar radiometric dating we have established the age of volcanic activity. The oldest lavas (~1.7 Ma) crop out in deeply eroded valleys in the center of the NW volcano (Tahiti Nui), while the main exposed shield phase erupted between 1.3 and 0.6 Ma, and the late-stage, valley-filled phase occurred between 0.7 and 0.3 Ma. The SW volcano (Tahiti Iti) was active between 0.9 and 0.3 Ma. There is a clear change in the composition of lavas through time. The earliest lavas are moderately high SiO2, evolved basalts (Mg number (Mg# = Mg/Mg+Fe2+) 42-49), probably derived from parental liquids of composition transitional between those of tholeiites and alkali basalts. The main shield lavas are predominantly more primitive olivine and clinopyroxene-phyric alkali basalts (Mg#60-64), while the later valley-filled lavas are basanitic (Mg#64-68) and commonly contain peridotitic xenoliths (olivine+orthopyroxene+clinopyroxene+spinel). Isotopic compositions also changes systematically with time to more depleted signatures. Rare earth element patterns and incompatible element ratios, however, show no systematic variation with time. We focused on a particularly well exposed sequence of shield building lavas in the Punaruu Valley, on the western side of Tahiti Nui. Combined K-Ar ages and magnetostratigraphic boundaries allow high-resolution age assignments to this ~0.7-km-thick flow section. We identified an early period of intense volcanic activity, from 1.3 to 0.9 Ma, followed by a period of more intermittent activity, from 0.9 to 0.6 Ma. Flow accumulation rates dropped by a factor of 4 at about 0 .9 Ma. This change in rate of magma supply corresponds to a shift in activity to Tahiti Iti. We calculated the composition of the parent magma for the shield-building stage of volcanism, assuming that it was in equilibrium with Fo89 olivine and that the most primitive aphyric lavas were derived from this parent by the crystallization of olivine alone. The majority of the shield lavas represent 25-50% crystallization of this parent magma, but the most evolved lavas represent about 70% crystallization. From over 50 analyzed flow units we recognized a quasi-periodic evolution of lava compositions within the early, robust period of volcanic activity, which we interpret as regular recharge of the magma chamber (approximately every 25±10 kyr). Volcanic evolution on Tahiti is similar to the classic Hawaiian pattern. As the shield-building stage waned, the lavas became more silica undersaturated and isotopic ratios of the lavas became more MORB-like. We propose that the Society plume is radically zoned due to entrainment of a sheath of viscously coupled, depleted mantle surrounding a central core of deeper mantle material. All parts of the rising plume melt, but the thermal compositional radial gradient ensures that greater proportions of melting occur over the plume center than its margins. The changing composition of Tahitian magmas results from lithospheric motion over this zoned plume. Magmas erupted during the main shield-building stage are derived mainly from the hot, incompatible element-enriched central zone of the plume; late-stage magmas are derived from the cooler, incompatible element-depleted viscously coupled sheath. A correlation between Pa/Ce and isotope ratio suggest that the Society plume contains deeply recycled continental material
Cognitive decline and quality of life in incident Parkinson's disease: The role of attention.
INTRODUCTION: Parkinson's disease dementia (PDD) is associated with poorer quality of life (QoL). Prior to the onset of PDD, many patients experience progressive cognitive impairment. There is a paucity of longitudinal studies investigating the effects of cognitive decline on QoL. This study aimed to determine the longitudinal impact of cognitive change on QoL in an incident PD cohort. METHODS: Recently diagnosed patients with PD (n = 212) completed a schedule of neuropsychological assessments and QoL measures; these were repeated after 18 (n = 190) and 36 months (n = 158). Mild cognitive impairment (PD-MCI) was classified with reference to the Movement Disorder Society criteria. Principal component analysis was used to reduce 10 neuropsychological tests to three cognitive factors: attention, memory/executive function, and global cognition. RESULTS: Baseline PD-MCI was a significant contributor to QoL (β = 0.2, p < 0.01). For those subjects (9%) who developed dementia, cognitive function had a much greater impact on QoL (β = 10.3, p < 0.05). Multivariate modelling showed attentional deficits had the strongest predictive power (β = -2.3, p < 0.01); brief global tests only modestly predicted decline in QoL (β = -0.4, p < 0.01). CONCLUSIONS: PD-MCI was associated with poorer QoL over three years follow up. Cognitive impairment had a greater impact on QoL in individuals who developed dementia over follow-up. Impaired attention was a significant determinant of QoL in PD. Interventions which improve concentration and attention in those with PD could potentially improve QoL
- …